Gaussian integral 2016, Part II

Calculus Level 4

The Gaussian integral states that + e x 2 d x = π \displaystyle \int_{-\infty}^{+\infty} e^{-x^2 } \, dx = \sqrt{\pi } .

Hence or otherwise, evaluate the integral

+ e x 2 + 2 x + 2016 d x \large \int_{-\infty}^{+\infty} e^{-x^2 + 2x + 2016} \, dx

If the above integral can be expressed in the form a e b π a e^{b} \sqrt{\pi} , where a , b a , b are positive integers, find a + b a+b .


The answer is 2018.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vignesh S
Apr 3, 2016

Write x 2 + 2 x + 2016 -x^{2}+2x+2016 as ( x 1 ) 2 + 2017 -(x-1)^{2}+2017 and substitute x 1 = t , x-1=t, the limits of the integral will not be affected. Therefore take e 2017 e^{2017} outside, since its a constant , then the integral is nothing but the Gaussian integral

Chew-Seong Cheong
Sep 25, 2017

Similar answer with @Vignesh S 's:

I = + e x 2 + 2 x + 2016 d x = + e ( x 2 2 x + 1 ) + 2017 d x = e 2017 + e ( x 1 ) 2 d x Let u = x 1 d u = d x = e 2017 + e u 2 d u = e 2017 π \begin{aligned} I & = \int_{-\infty}^{+\infty} e^{-x^2+2x+2016} \ dx \\ & = \int_{-\infty}^{+\infty} e^{-(x^2-2x+1) + 2017} \ dx \\ & = e^{2017} \int_{-\infty}^{+\infty} e^{-(x-1)^2} \ dx & \small \color{#3D99F6} \text{Let }u = x-1 \implies du = dx \\ & = e^{2017} \int_{-\infty}^{+\infty} e^{-u^2} \ du \\ & = e^{2017} \sqrt \pi \end{aligned}

a + b = 1 + 2017 = 2018 \implies a+b = 1+2017 = \boxed{2018}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...