Gaussian integral but different

Calculus Level 5

Evaluate

0 cos ( x ) sin ( x ) e x 2 d x \int_0^{\infty}\cos\left(x\right)\sin\left(x\right)e^{-x^2}dx\

The solution can be written in the form

e a π b c e r f ( c ) d -\frac{e^{-a}\cdot\sqrt[b]{\pi}\cdot c\cdot erf\left(c\right)}{d}

Where ( a , b , d Z + c C ) I m ( c ) < d \left(a{,}b{,}d\in\mathbb{Z}_+\wedge c\in\mathbb{C}\ \right)\ \wedge Im\left(c\right)<d Then find a b d c 2 a\cdot b\cdot d\cdot c^2

Notation : e r f ( x ) erf(x) denotes error function


The answer is -8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Henri Kärpijoki
Apr 13, 2020

Solution:

First, we can apply the sine double angle formula

1 2 0 sin ( 2 x ) e x 2 d x sin ( 2 x ) = 2 sin ( x ) cos ( x ) \frac{1}{2}\int_0^{\infty}\sin\left(2x\right)e^{-x^2}\ dx \quad\quad\quad\color{#3D99F6}{\sin(2x)=2\sin(x)\cos(x)}

Then we change sine to its exponential form

= 1 2 0 i e 2 i x e 2 i x 2 e x 2 d x sin ( x ) = e i x e i x 2 i =\frac{1}{2}\int_0^{\infty}-i\frac{e^{2ix}-e^{-2ix}}{2}e^{-x^2}dx \quad\quad\quad\color{#3D99F6}{\sin\left(x\right)=\frac{e^{ix}-e^{-ix}}{2i}}

Then let's apply linearity of the integral

= 1 4 i ( 0 e 2 i x x 2 d x 0 e 2 i x x 2 d x ) =-\frac{1}{4}i\left(\int_0^{\infty}e^{2ix-x^2}\ dx-\int_0^{\infty}e^{-2ix-x^2}\ dx\right)

Then we can change these to more familiar Gaussian integral

= 1 4 i ( 0 e i 2 + 2 i x x 2 + i 2 d x 0 e i 2 2 i x x 2 + i 2 d x ) =-\frac{1}{4}i\left(\int_0^{\infty}e^{-i^2+2ix-x^2+i^2}\ dx-\int_0^{\infty}e^{-i^2-2ix-x^2+i^2}\ dx\right)

= e 1 4 i ( 0 e i 2 + 2 i x x 2 d x 0 e i 2 2 i x x 2 d x ) =-\frac{e^{-1}}{4}i\left(\int_0^{\infty}e^{-i^2+2ix-x^2}\ dx-\int_0^{\infty}e^{-i^2-2ix-x^2}\ dx\right)

= e 1 4 i ( 0 e ( x i ) 2 d x 0 e ( x + i ) 2 d x ) =-\frac{e^{-1}}{4}i\left(\int_0^{\infty}e^{-\left(x-i\right)^2}\ dx-\int_0^{\infty}e^{-\left(x+i\right)^2}\ dx\right)

We have to use now the error function to these two integrals:

e ( x i ) 2 d x L e t u = x i d u = d x \int e^{-\left(x-i\right)^2}\ dx\quad\quad\quad\quad\color{#3D99F6}{Let\quad u=x-i \Rightarrow du=dx}

π 2 2 π e u 2 d u = π 2 e r f ( u ) + C = π 2 e r f ( x i ) + C \Rightarrow\frac{\sqrt{\pi}}{2}\int_{ }^{ }\frac{2}{\sqrt{\pi}}e^{-u^2}\ du=\frac{\sqrt{\pi}}{2}erf\left(u\right)+C=\frac{\sqrt{\pi}}{2}erf\left(x-i\right)+C

e ( x + i ) 2 d x L e t u = x + i d u = d x \int e^{-\left(x+i\right)^2}\ dx\quad\quad\quad\quad\color{#3D99F6}{Let\quad u=x+i \Rightarrow du=dx}

π 2 2 π e u 2 d u = π 2 e r f ( u ) + C = π 2 e r f ( x + i ) + C \Rightarrow\frac{\sqrt{\pi}}{2}\int_{ }^{ }\frac{2}{\sqrt{\pi}}e^{-u^2}\ du=\frac{\sqrt{\pi}}{2}erf\left(u\right)+C=\frac{\sqrt{\pi}}{2}erf\left(x+i\right)+C

Next, we just have to plug in limits

e 1 4 i ( 0 e ( x i ) 2 d x 0 e ( x + i ) 2 d x ) = e 1 4 i lim a ( / 0 a π 2 e r f ( x i ) π 2 e r f ( x + i ) ) \Rightarrow-\frac{e^{-1}}{4}i\left(\int_0^{\infty}e^{-\left(x-i\right)^2}\ dx-\int_0^{\infty}e^{-\left(x+i\right)^2}\ dx\right)=-\frac{e^{-1}}{4}i\cdot\lim_{a\rightarrow\infty}\left(\bigg/_{\!\!\!\!\!0}^a\frac{\sqrt{\pi}}{2}erf\left(x-i\right)-\frac{\sqrt{\pi}}{2}erf\left(x+i\right)\right)

= e 1 π 8 i lim a ( / 0 a e r f ( x i ) e r f ( x + i ) ) =-\frac{e^{-1}\sqrt{\pi}}{8}i\cdot\lim_{a\rightarrow\infty}\left(\bigg/_{\!\!\!\!\!0}^aerf\left(x-i\right)-erf\left(x+i\right)\right)

= e 1 π 8 i lim a ( e r f ( a i ) e r f ( a + i ) ( e r f ( 0 i ) e r f ( 0 + i ) ) ) =-\frac{e^{-1}\sqrt{\pi}}{8}i\cdot\lim_{a\rightarrow\infty}\left(erf\left(a-i\right)-erf\left(a+i\right)-\left(erf\left(0-i\right)-erf\left(0+i\right)\right)\right)

Those parts with a limit are going to cancel each other and we are left with

= e 1 π 8 i ( ( e r f ( i ) e r f ( i ) ) ) = e 1 π 8 i ( ( e r f ( i ) e r f ( i ) ) ) e r f ( x ) = e r f ( x ) =-\frac{e^{-1}\sqrt{\pi }}{8}i\cdot \left(-\left(erf\left(-i\right)-erf\left(i\right)\right)\right)=-\frac{e^{-1}\sqrt{\pi }}{8}i\cdot \left(-\left(-erf\left(i\right)-erf\left(i\right)\right)\right)\quad\quad\quad\quad\color{#3D99F6}{erf(-x)=-erf(x)}

Finally, we are going to get

= e 1 π 8 2 e r f ( i ) = e 1 π i e r f ( i ) 4 =-\frac{e^{-1}\sqrt{\pi}}{8}\cdot2erf\left(i\right)=-\frac{e^{-1}\sqrt{\pi}\ i\ erf\left(i\right)}{4}

a b d c 2 = 1 2 4 i 2 = 8 \Rightarrow a\cdot b\cdot d\cdot c^2=1\cdot2\cdot4\cdot i^2=-8

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...