Evaluate
The solution can be written in the form
Where Then find
Notation : denotes error function
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Solution:
First, we can apply the sine double angle formula
2 1 ∫ 0 ∞ sin ( 2 x ) e − x 2 d x sin ( 2 x ) = 2 sin ( x ) cos ( x )
Then we change sine to its exponential form
= 2 1 ∫ 0 ∞ − i 2 e 2 i x − e − 2 i x e − x 2 d x sin ( x ) = 2 i e i x − e − i x
Then let's apply linearity of the integral
= − 4 1 i ( ∫ 0 ∞ e 2 i x − x 2 d x − ∫ 0 ∞ e − 2 i x − x 2 d x )
Then we can change these to more familiar Gaussian integral
= − 4 1 i ( ∫ 0 ∞ e − i 2 + 2 i x − x 2 + i 2 d x − ∫ 0 ∞ e − i 2 − 2 i x − x 2 + i 2 d x )
= − 4 e − 1 i ( ∫ 0 ∞ e − i 2 + 2 i x − x 2 d x − ∫ 0 ∞ e − i 2 − 2 i x − x 2 d x )
= − 4 e − 1 i ( ∫ 0 ∞ e − ( x − i ) 2 d x − ∫ 0 ∞ e − ( x + i ) 2 d x )
We have to use now the error function to these two integrals:
∫ e − ( x − i ) 2 d x L e t u = x − i ⇒ d u = d x
⇒ 2 π ∫ π 2 e − u 2 d u = 2 π e r f ( u ) + C = 2 π e r f ( x − i ) + C
∫ e − ( x + i ) 2 d x L e t u = x + i ⇒ d u = d x
⇒ 2 π ∫ π 2 e − u 2 d u = 2 π e r f ( u ) + C = 2 π e r f ( x + i ) + C
Next, we just have to plug in limits
⇒ − 4 e − 1 i ( ∫ 0 ∞ e − ( x − i ) 2 d x − ∫ 0 ∞ e − ( x + i ) 2 d x ) = − 4 e − 1 i ⋅ a → ∞ lim ( / 0 a 2 π e r f ( x − i ) − 2 π e r f ( x + i ) )
= − 8 e − 1 π i ⋅ a → ∞ lim ( / 0 a e r f ( x − i ) − e r f ( x + i ) )
= − 8 e − 1 π i ⋅ a → ∞ lim ( e r f ( a − i ) − e r f ( a + i ) − ( e r f ( 0 − i ) − e r f ( 0 + i ) ) )
Those parts with a limit are going to cancel each other and we are left with
= − 8 e − 1 π i ⋅ ( − ( e r f ( − i ) − e r f ( i ) ) ) = − 8 e − 1 π i ⋅ ( − ( − e r f ( i ) − e r f ( i ) ) ) e r f ( − x ) = − e r f ( x )
Finally, we are going to get
= − 8 e − 1 π ⋅ 2 e r f ( i ) = − 4 e − 1 π i e r f ( i )
⇒ a ⋅ b ⋅ d ⋅ c 2 = 1 ⋅ 2 ⋅ 4 ⋅ i 2 = − 8