Evaluate: ∫ 0 ∞ e − x 2 cosh x d x
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Clever solution sir! Mine is similar but different in the bottom part. I use the property that f ( v ) = e − v 2 is an even function, so that ∫ 1 / 2 ∞ e − v 2 d v = ∫ − ∞ − 1 / 2 e − v 2 d v Then combine the integral to continue the calculation: . . . = 2 4 e ∫ − ∞ ∞ e − u 2 d u = 2 4 e ⋅ π = 2 π e .
you are guines
Let us begin with ∫ 0 ∞ e − x 2 ⋅ c o s h ( x ) d x = ∫ 0 ∞ e − x 2 ⋅ ( 2 e x + e − x ) d x ;
or 2 1 ⋅ ∫ 0 ∞ e − ( x 2 − x ) + e − ( x 2 + x ) d x ;
or 2 1 ⋅ ∫ 0 ∞ e − ( x − 2 1 ) 2 + 4 1 + e − ( x + 2 1 ) 2 + 4 1 d x ;
or 2 1 ⋅ e 4 1 ⋅ ∫ 0 ∞ e − ( x − 2 1 ) 2 + e − ( x + 2 1 ) 2 d x ;
Now, let u = x − 2 1 , d u = d x , − 2 1 ≤ u < ∞ AND v = x + 2 1 , d v = d x , 2 1 ≤ v < ∞ . This now results in:
2 1 ⋅ e 4 1 ⋅ [ ∫ − 2 1 ∞ e − u 2 d u + ∫ 2 1 ∞ e − v 2 d v ] ;
or 2 1 ⋅ e 4 1 ⋅ [ ∫ − 2 1 0 e − u 2 d u + ∫ 0 ∞ e − u 2 d u + ∫ 0 ∞ e − v 2 d v − ∫ 0 2 1 e − v 2 d v ] ;
By exploiting symmetry, we have ∫ − 2 1 0 e − u 2 d u = ∫ 0 2 1 e − v 2 d v . This helps simplify our integration into:
2 1 ⋅ e 4 1 ⋅ [ ∫ − 2 1 0 e − u 2 d u + ∫ 0 ∞ e − u 2 d u + ∫ 0 ∞ e − v 2 d v − ∫ 0 2 1 e − v 2 d v ] = 2 1 ⋅ e 4 1 ⋅ 2 ∫ 0 ∞ e − u 2 d u ;
or e 4 1 ⋅ 2 π ;
or 2 π ⋅ e .
We can use the following property: f is continuous on ( − a , a ) ⟹ ∫ 0 a f even ( x ) d x = 2 1 ∫ − a a f ( x ) d x where f even is the even part of f , defined by f even ( x ) = 2 f ( x ) + f ( − x ) . For instance, cosh x is defined as the even part of e x , and since e − x 2 is even, we can conclude that e − x 2 cosh x is the even part of e − x 2 ⋅ e x = e − x 2 + x = e − ( x − 2 1 ) 2 + 4 1 = 4 e ⋅ e − ( x − 2 1 ) 2
Then, ∫ 0 ∞ e − x 2 cosh x d x = N → ∞ lim ∫ 0 N e − x 2 cosh x d x = 2 1 N → ∞ lim ∫ − N N 4 e ⋅ e − ( x − 2 1 ) 2 d x = 2 4 e N → ∞ lim ∫ − N − 2 1 N − 2 1 e − u 2 d u = 2 4 e ∫ − ∞ ∞ e − u 2 d u = 2 4 e ⋅ π = 2 π e ( By the above property ) ( Using the substitution u = x − 2 1 )
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 ∞ e − x 2 cosh x d x = ∫ 0 ∞ e − x 2 ( 2 e x + e − x ) d x = ∫ 0 ∞ 2 e − x 2 + x + e − x 2 − x d x = ∫ 0 ∞ 2 e − ( x − 2 1 ) 2 + 4 1 + e − ( x + 2 1 ) 2 + 4 1 d x = 2 4 e ( ∫ − 2 1 ∞ e − u 2 d u + ∫ 2 1 ∞ e − v 2 d v ) = 2 4 e ( ∫ − 2 1 0 e − t 2 d t + ∫ 0 ∞ e − t 2 d t + ∫ 0 ∞ e − t 2 d t − ∫ 0 2 1 e − t 2 d t ) = 2 4 e ( ∫ 0 2 1 e − t 2 d t + 2 ∫ 0 ∞ e − t 2 d t − ∫ 0 2 1 e − t 2 d t ) = 4 e ∫ 0 ∞ e − t 2 d t = 2 4 e ∫ 0 ∞ s − 2 1 e − s d s = 2 4 e ⋅ Γ ( 2 1 ) = 2 4 e ⋅ π = 2 π e Let u = x − 2 1 , v = x + 2 1 Replace u and v with t . Note that ∫ − 2 1 0 e − t 2 d t is an even function. Let s = t 2 ⟹ d s = 2 t d t Gamma function Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t