Gaussian integral, but with a hyperbolic cosine.

Calculus Level 3

Evaluate: 0 e x 2 cosh x d x \displaystyle\int^{\infty}_{0} e^{-x^2}\cosh{x}\ dx

π e 6 \dfrac{\sqrt{\pi}\sqrt{e}}{6} π e 2 \dfrac{\sqrt{\pi}\sqrt{e}}{2} π e 6 \dfrac{\sqrt{\pi\sqrt{e}}}{6} π e 2 \dfrac{\sqrt{\pi\sqrt{e}}}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 16, 2018

I = 0 e x 2 cosh x d x = 0 e x 2 ( e x + e x 2 ) d x = 0 e x 2 + x + e x 2 x 2 d x = 0 e ( x 1 2 ) 2 + 1 4 + e ( x + 1 2 ) 2 + 1 4 2 d x Let u = x 1 2 , v = x + 1 2 = e 4 2 ( 1 2 e u 2 d u + 1 2 e v 2 d v ) Replace u and v with t . = e 4 2 ( 1 2 0 e t 2 d t + 0 e t 2 d t + 0 e t 2 d t 0 1 2 e t 2 d t ) Note that 1 2 0 e t 2 d t is an even function. = e 4 2 ( 0 1 2 e t 2 d t + 2 0 e t 2 d t 0 1 2 e t 2 d t ) = e 4 0 e t 2 d t Let s = t 2 d s = 2 t d t = e 4 2 0 s 1 2 e s d s Gamma function Γ ( z ) = 0 t z 1 e t d t = e 4 2 Γ ( 1 2 ) = e 4 2 π = π e 2 \begin{aligned} I & = \int_0^\infty e^{-x^2} \cosh x \ dx \\ & = \int_0^\infty e^{-x^2} \left(\frac {e^x+e^{-x}}2\right) dx \\ & = \int_0^\infty \frac {e^{-x^2+x}+e^{-x^2-x}}2 dx \\ & = \int_0^\infty \frac {e^{-\left(x-\frac 12\right)^2 + \frac 14}+e^{-\left(x+\frac 12\right)^2 + \frac 14}}2 dx & \small \color{#3D99F6} \text{Let }u = x - \frac 12,\ v = x + \frac 12 \\ & = \frac {\sqrt[4] e}2 \left(\int_{-\frac 12}^\infty e^{-u^2} du + \int_\frac 12^\infty e^{-v^2} dv \right) & \small \color{#3D99F6} \text{Replace }u \text{ and }v \text{ with }t. \\ & = \frac {\sqrt[4] e}2 \left({\color{#3D99F6}\int_{-\frac 12}^0 e^{-t^2} dt} + \int_0^\infty e^{-t^2} dt + \int_0^\infty e^{-t^2} dt - \int_0^\frac 12 e^{-t^2} dt \right) & \small \color{#3D99F6} \text{Note that } \int_{-\frac 12}^0 e^{-t^2} dt \text{ is an even function.} \\ & = \frac {\sqrt[4] e}2 \left({\color{#3D99F6}\int_0^{\frac 12} e^{-t^2} dt} + 2 \int_0^\infty e^{-t^2} dt - \int_0^\frac 12 e^{-t^2} dt \right) \\ & = \sqrt[4] e \int_0^\infty e^{-t^2} dt & \small \color{#3D99F6} \text{Let }s = t^2 \implies ds = 2t \ dt \\ & = \frac {\sqrt[4] e}2 \int_0^\infty s^{-\frac 12} e^{-s} ds & \small \color{#3D99F6} \text{Gamma function }\Gamma (z) = \int_0^\infty t^{z-1} e^{-t} dt \\ & = \frac {\sqrt[4] e}2 \cdot {\color{#3D99F6} \Gamma \left(\frac 12\right)} = \frac {\sqrt[4] e}2 \cdot {\color{#3D99F6} \sqrt \pi} = \boxed{\dfrac {\sqrt{\pi \sqrt e}}2} \end{aligned}

Clever solution sir! Mine is similar but different in the bottom part. I use the property that f ( v ) = e v 2 f(v)=e^{-v^2} is an even function, so that 1 / 2 e v 2 d v = 1 / 2 e v 2 d v \int_{1/2}^\infty e^{-v^2}dv=\int_{-\infty}^{-1/2} e^{-v^2}dv Then combine the integral to continue the calculation: . . . = e 4 2 e u 2 d u = e 4 2 π = π e 2 . \begin{aligned}...&=\dfrac{\sqrt[4]e}{2}\int_{-\infty}^\infty e^{-u^2}du\\&=\dfrac{\sqrt[4]e}{2}\cdot\sqrt\pi\\&=\dfrac{\sqrt{\pi\sqrt e}}{2}.\end{aligned}

Kelvin Hong - 2 years, 8 months ago

you are guines

Nahom Assefa - 2 years, 8 months ago
Tom Engelsman
Sep 15, 2018

Let us begin with 0 e x 2 c o s h ( x ) d x = 0 e x 2 ( e x + e x 2 ) d x \int_{0}^{\infty} e^{-x^2} \cdot cosh(x) dx = \int_{0}^{\infty} e^{-x^2} \cdot (\frac{e^x + e^{-x}}{2}) dx ;

or 1 2 0 e ( x 2 x ) + e ( x 2 + x ) d x ; \frac{1}{2} \cdot \int_{0}^{\infty} e^{-(x^2 - x)} + e^{-(x^2 + x)} dx;

or 1 2 0 e ( x 1 2 ) 2 + 1 4 + e ( x + 1 2 ) 2 + 1 4 d x \frac{1}{2} \cdot \int_{0}^{\infty} e^{-(x - \frac{1}{2})^2 + \frac{1}{4}} + e^{-(x + \frac{1}{2})^2 + \frac{1}{4}} dx ;

or 1 2 e 1 4 0 e ( x 1 2 ) 2 + e ( x + 1 2 ) 2 d x ; \frac{1}{2} \cdot e^{\frac{1}{4}} \cdot \int_{0}^{\infty} e^{-(x - \frac{1}{2})^2} + e^{-(x + \frac{1}{2})^2} dx;

Now, let u = x 1 2 , d u = d x , 1 2 u < u = x - \frac{1}{2}, du = dx, -\frac{1}{2} \le u < \infty AND v = x + 1 2 , d v = d x , 1 2 v < . v = x + \frac{1}{2}, dv = dx, \frac{1}{2} \le v < \infty. This now results in:

1 2 e 1 4 [ 1 2 e u 2 d u + 1 2 e v 2 d v ] ; \frac{1}{2} \cdot e^{\frac{1}{4}} \cdot [ \int_{-\frac{1}{2}}^{\infty} e^{-u^2} du + \int_{\frac{1}{2}}^{\infty}e^{-v^2} dv];

or 1 2 e 1 4 [ 1 2 0 e u 2 d u + 0 e u 2 d u + 0 e v 2 d v 0 1 2 e v 2 d v ] ; \frac{1}{2} \cdot e^{\frac{1}{4}} \cdot [ \int_{-\frac{1}{2}}^{0} e^{-u^2} du + \int_{0}^{\infty} e^{-u^2} du + \int_{0}^{\infty}e^{-v^2} dv - \int_{0}^{\frac{1}{2}} e^{-v^2} dv];

By exploiting symmetry, we have 1 2 0 e u 2 d u = 0 1 2 e v 2 d v \int_{-\frac{1}{2}}^{0} e^{-u^2} du = \int_{0}^{\frac{1}{2}} e^{-v^2} dv . This helps simplify our integration into:

1 2 e 1 4 [ 1 2 0 e u 2 d u + 0 e u 2 d u + 0 e v 2 d v 0 1 2 e v 2 d v ] = 1 2 e 1 4 2 0 e u 2 d u \frac{1}{2} \cdot e^{\frac{1}{4}} \cdot [ \int_{-\frac{1}{2}}^{0} e^{-u^2} du + \int_{0}^{\infty} e^{-u^2} du + \int_{0}^{\infty}e^{-v^2} dv - \int_{0}^{\frac{1}{2}} e^{-v^2} dv] = \frac{1}{2} \cdot e^{\frac{1}{4}} \cdot 2\int_{0}^{\infty} e^{-u^2} du ;

or e 1 4 π 2 ; e^{\frac{1}{4}} \cdot \frac{\sqrt{\pi}}{2};

or π e 2 . \boxed{ \frac{\sqrt{\pi \cdot \sqrt{e}}}{2}}.

Brian Moehring
Sep 18, 2018

We can use the following property: f is continuous on ( a , a ) 0 a f even ( x ) d x = 1 2 a a f ( x ) d x f \text{ is continuous on } (-a,a) \implies \int_0^a f_{\text{even}}(x)\,dx = \frac{1}{2} \int_{-a}^a f(x)\,dx where f even f_{\text{even}} is the even part of f f , defined by f even ( x ) = f ( x ) + f ( x ) 2 . f_{\text{even}}(x) = \frac{f(x) + f(-x)}{2}. For instance, cosh x \cosh x is defined as the even part of e x , e^x, and since e x 2 e^{-x^2} is even, we can conclude that e x 2 cosh x e^{-x^2}\cosh x is the even part of e x 2 e x = e x 2 + x = e ( x 1 2 ) 2 + 1 4 = e 4 e ( x 1 2 ) 2 \large e^{-x^2}\cdot e^x = e^{-x^2 + x} = e^{-\left(x-\frac{1}{2}\right)^2 + \frac{1}{4}} = \sqrt[4]{e} \cdot e^{-\left(x-\frac{1}{2}\right)^2}

Then, 0 e x 2 cosh x d x = lim N 0 N e x 2 cosh x d x = 1 2 lim N N N e 4 e ( x 1 2 ) 2 d x ( By the above property ) = e 4 2 lim N N 1 2 N 1 2 e u 2 d u ( Using the substitution u = x 1 2 ) = e 4 2 e u 2 d u = e 4 2 π = π e 2 \begin{aligned} \int_0^\infty e^{-x^2}\cosh x\,dx &= \lim_{N\to\infty} \int_0^N e^{-x^2}\cosh x\, dx \\ &= \frac{1}{2} \lim_{N\to\infty} \int_{-N}^N \sqrt[4]{e} \cdot e^{-\left(x-\frac{1}{2}\right)^2}\,dx & \left(\text{By the above property}\right) \\ &= \frac{\sqrt[4]{e}}{2} \lim_{N\to\infty} \int_{-N-\frac{1}{2}}^{N-\frac{1}{2}} e^{-u^2}\,du & \left(\text{Using the substitution } u = x-\frac{1}{2}\right) \\ &= \frac{\sqrt[4]{e}}{2} \int_{-\infty}^{\infty} e^{-u^2}\,du \\ &= \frac{\sqrt[4]{e}}{2} \cdot \sqrt{\pi} \\ &= \boxed{\dfrac{\sqrt{\pi\sqrt{e}}}{2}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...