Gauss's Law Exercise (part 4)

A particle with charge q = + 10 q=+10 is position at ( x , y , z ) = ( 1 / 4 , 1 / 4 , 1 / 2 ) (x,y,z)=(1/4,1/4,1/2) behind that black dot as shown in figure. A closed Hemisphere centered at the origin has the equation x 2 + y 2 + z 2 = 1 x^{2}+y^{2}+z^{2}=1 ( z 0 ) (z≥0) . Let the electric flux through through curved surface be ϕ 1 \phi_1 and through plane surface ϕ 2 \phi_2

Determine the following ratio: ϕ 1 ϕ 2 ϕ 1 + ϕ 2 \frac{\phi_{1}\phi_{2}}{\phi_{1}+\phi_{2}} Details and Assumtions 1) Electric permittivity ϵ 0 = 1 \epsilon_0=1 . 2) Area vectors are outward normals .


The answer is 1.934.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Mar 14, 2020

Nice problem. I have attached my simulation code. The fluxes are (where Surface 1 1 is the disk):

ϕ 1 2.623 ϕ 2 7.376 \phi_1 \approx 2.623 \\ \phi_2 \approx 7.376

The fluxes add to 10 10 as they must.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import math

N = 5000

#####################################

q = 10.0

xq = 1.0/4.0
yq = 1.0/4.0
zq = 1.0/2.0

e0 = 1.0

#####################################

k = 1.0/(4.0*math.pi*e0)

phi1 = 0.0
phi2 = 0.0

#####################################
#####################################
#####################################
#####################################

# Disk 

dr = 1.0/N
dtheta = 2.0*math.pi/N

nx = 0.0
ny = 0.0
nz = -1.0

r = 0.0

while r <= 1.0:

    theta = 0.0

    while theta <= 2.0*math.pi:

        x = r*math.cos(theta)
        y = r*math.sin(theta)
        z = 0.0

        dS = r*dr*dtheta

        Dx = x - xq
        Dy = y - yq
        Dz = z - zq

        D = math.sqrt(Dx**2.0 + Dy**2.0 + Dz**2.0)

        ux = Dx/D
        uy = Dy/D
        uz = Dz/D

        E = k*q/(D**2.0)

        Ex = E * ux
        Ey = E * uy
        Ez = E * uz

        dot = Ex*nx + Ey*ny + Ez*nz

        dphi = dot * dS

        phi1 = phi1 + dphi

        theta = theta + dtheta

    r = r + dr

print "done"

#####################################
#####################################
#####################################
#####################################


# Half sphere

dsigma = (math.pi/2.0)/N
dtheta = 2.0*math.pi/N

sigma = 0.0

while sigma <= math.pi/2.0:

    theta = 0.0

    while theta <= 2.0*math.pi:

        x = 1.0*math.cos(theta)*math.sin(sigma)
        y = 1.0*math.sin(theta)*math.sin(sigma)
        z = 1.0*math.cos(sigma)

        nx = x
        ny = y
        nz = z

        dS = (1.0**2.0)*math.sin(sigma) * dtheta * dsigma

        Dx = x - xq
        Dy = y - yq
        Dz = z - zq

        D = math.sqrt(Dx**2.0 + Dy**2.0 + Dz**2.0)

        ux = Dx/D
        uy = Dy/D
        uz = Dz/D

        E = k*q/(D**2.0)

        Ex = E * ux
        Ey = E * uy
        Ez = E * uz

        dot = Ex*nx + Ey*ny + Ez*nz

        dphi = dot * dS

        phi2 = phi2 + dphi

        theta = theta + dtheta

    sigma = sigma + dsigma

print "done"
print ""
print ""

#####################################
#####################################
#####################################
#####################################

print N
print ""
num =  phi1 * phi2 
denom =  phi1 + phi2 

print phi1
print phi2
print ""

print num
print denom
print ""

print (num/denom)

################################################

#done
#done


#1000

#2.62580284854
#7.38980208395

#19.4041633622
#10.0156049325

#1.93739304745
#>>> ================================ RESTART ================================
#>>> 
#done
#done


#2000

#2.62544373033
#7.38339536989

#19.3846890824
#10.0088391002

#1.93675698933
#>>> ================================ RESTART ================================
#>>> 
#done
#done


#5000

#2.62321801288
#7.37643115336

#19.3499870723
#9.99964916624

#1.9350665959

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...