Gauss's Law Exercise

Define the following volume:

x = r cos θ y = r sin θ 0 z 1 1 r 2 0 θ 2 π x = r \cos \theta \\ y = r \sin \theta \\ 0 \leq z \leq 1 \\ 1 \leq r \leq 2 \\ 0 \leq \theta \leq 2 \pi

Now consider the closed surface which is the boundary of the volume. It consists of four parts: a top washer, a bottom washer, an outer cylindrical portion, and an inner cylindrical portion. Suppose there is a charge q q at position ( x , y , z ) = ( 3 2 , 0 , 2 3 ) (x,y,z) = \Big( \frac{3}{2}, 0, \frac{2}{3} \Big) . Let the fluxes of the electric field through the four sub-surfaces be ( ϕ T , ϕ B , ϕ O , ϕ I ) (\phi_T,\phi_B,\phi_O,\phi_I) . Determine the following ratio:

ϕ T ϕ B ϕ O ϕ I ϕ T + ϕ B + ϕ O + ϕ I \frac{\phi_T \, \phi_B \, \phi_O \, \phi_I }{\phi_T + \phi_B + \phi_O + \phi_I }

Details and Assumptions:
1) Electric permittivity ϵ 0 = 1 \epsilon_0 = 1
2) q = + 10 q = +10
3) Use outward facing normal vectors for all sub-surfaces
4) All four fluxes are positive numbers


The answer is 2.29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Feb 17, 2020

As always, nice problem.

The position vector of the point charge is:

r p = 3 2 i ^ + 2 3 k ^ \vec{r}_p = \frac{3}{2} \hat{i} + \frac{2}{3} \hat{k}

Consider the outer cylindrical surface:

Position of a point on the outer surface is:

r c = 2 cos θ i ^ + 2 sin θ j ^ + z k ^ \vec{r}_c = 2\cos{\theta} \hat{i} + 2\sin{\theta} \hat{j} + z\hat{k}

R = r c r p \vec{R} = \vec{r}_c - \vec{r}_p

The electric field at this point on the surface due to the charge is:

E = k q R R 3 \vec{E} = \frac{kq\vec{R}}{\lvert \vec{R} \rvert^3}

The outward normal surface area vector of this surface is:

d S = 2 d θ d z ( cos θ i ^ + sin θ j ^ ) d\vec{S} = 2 \ d\theta \ dz\left(\cos{\theta} \hat{i} + \sin{\theta} \hat{j} \right)

The elementary electric flux is:

d ϕ O = E d S = 2160 k ( 3 cos ( θ ) 4 ) ( 36 z 2 48 z 216 cos ( θ ) + 241 ) 3 / 2 d θ d z d\phi_O = \vec{E} \cdot d\vec{S} = -\frac{2160\,k\,\left(3\,\cos\left(\mathrm{\theta}\right)-4\right)}{{\left(36\,z^2-48\,z-216\,\cos\left(\mathrm{\theta}\right)+241\right)}^{3/2}}d\theta \ dz

Repeat the exact process for the other three surfaces.


For the inner cylindrical surface:

r c = cos θ i ^ + sin θ j ^ + z k ^ \vec{r}_c = \cos{\theta} \hat{i} + \sin{\theta} \hat{j} + z\hat{k} d S = d θ d z ( cos θ i ^ + sin θ j ^ ) d\vec{S} = - \ d\theta \ dz\left(\cos{\theta} \hat{i} + \sin{\theta} \hat{j} \right) d ϕ I = E d S = 1080 k ( 3 cos ( θ ) 2 ) ( 36 z 2 48 z 108 cos ( θ ) + 133 ) 3 / 2 d θ d z d\phi_I = \vec{E} \cdot d\vec{S} = \frac{1080\,k\,\left(3\,\cos\left(\mathrm{\theta}\right)-2\right)}{{\left(36\,z^2-48\,z-108\,\cos\left(\mathrm{\theta}\right)+133\right)}^{3/2}} \ d\theta \ dz


For the top surface: r c = r cos θ i ^ + r sin θ j ^ + k ^ \vec{r}_c = r\cos{\theta} \hat{i} + r\sin{\theta} \hat{j} + \hat{k} d S = r d r d θ k ^ d\vec{S} = r \ dr \ d\theta \hat{k} d ϕ T = E d S = 720 k r ( 36 r 2 108 cos ( θ ) r + 85 ) 3 / 2 d r d θ d\phi_T = \vec{E} \cdot d\vec{S} = \frac{720\,k\,r}{{\left(36\,r^2-108\,\cos\left(\mathrm{\theta}\right)\,r+85\right)}^{3/2}}\ dr \ d\theta


For the bottom surface: r c = r cos θ i ^ + r sin θ j ^ + k ^ \vec{r}_c = r\cos{\theta} \hat{i} + r\sin{\theta} \hat{j} + \hat{k} d S = r d r d θ k ^ d\vec{S} = -r \ dr \ d\theta \hat{k} d ϕ B = E d S = 1440 k r ( 36 r 2 108 cos ( θ ) r + 97 ) 3 / 2 d r d θ d\phi_B = \vec{E} \cdot d\vec{S} = \frac{1440\,k\,r}{{\left(36\,r^2-108\,\cos\left(\mathrm{\theta}\right)\,r+97\right)}^{3/2}}\ dr \ d\theta


Finally:

ϕ O = 0 1 0 2 π 2160 k ( 3 cos ( θ ) 4 ) ( 36 z 2 48 z 216 cos ( θ ) + 241 ) 3 / 2 d θ d z \phi_O = \int_{0}^{1} \int_{0}^{2\pi} -\frac{2160\,k\,\left(3\,\cos\left(\mathrm{\theta}\right)-4\right)}{{\left(36\,z^2-48\,z-216\,\cos\left(\mathrm{\theta}\right)+241\right)}^{3/2}}d\theta \ dz

ϕ I = 0 1 0 2 π 1080 k ( 3 cos ( θ ) 2 ) ( 36 z 2 48 z 108 cos ( θ ) + 133 ) 3 / 2 d θ d z \phi_I = \int_{0}^{1} \int_{0}^{2\pi} \frac{1080\,k\,\left(3\,\cos\left(\mathrm{\theta}\right)-2\right)}{{\left(36\,z^2-48\,z-108\,\cos\left(\mathrm{\theta}\right)+133\right)}^{3/2}} \ d\theta \ dz

ϕ T = 1 2 0 2 π 720 k r ( 36 r 2 108 cos ( θ ) r + 85 ) 3 / 2 d θ d r \phi_T = \int_{1}^{2} \int_{0}^{2\pi} \frac{720\,k\,r}{{\left(36\,r^2-108\,\cos\left(\mathrm{\theta}\right)\,r+85\right)}^{3/2}}\ d\theta \ dr

ϕ B = 1 2 0 2 π 1440 k r ( 36 r 2 108 cos ( θ ) r + 97 ) 3 / 2 d θ d r \phi_B = \int_{1}^{2} \int_{0}^{2\pi} \frac{1440\,k\,r}{{\left(36\,r^2-108\,\cos\left(\mathrm{\theta}\right)\,r+97\right)}^{3/2}}\ d\theta \ dr

k = 1 4 π k = \frac{1}{4\pi}

Simplifications are straightforward but tedious and time-consuming. Wolfram Alpha tackles the above four monsters. The sum of the fluxes adds up to 10 which verifies Gauss' Law. The answer comes out to be 2.292 \boxed{2.292} .

@Karan Chatrath Sir sorry for that.I think sir you are right in one step math is there excluding that step all physics is there. Please forgive me. How you write that expression outward normal surface area vector , I can't able to understand?? Please

A Former Brilliant Member - 1 year, 3 months ago

Log in to reply

Oh, you have no reason to be sorry. I was just sharing my thoughts on the point you raised. In fact, you raised a valid point. There are many who get intimidated by mathematics while learning physics. My suggestions are against getting bogged down by mathematical details or notations.

To answer your question, I have attached a couple of links below. Hope they help. Pay attention to the point in the problem statement that says 'outward-facing normal vectors'. This will directly give you the directions of the area vectors. For the cylindrical surfaces, the directions are radial-outward (away from the central axis of the cylinder) for the outer surface and radial-inward (towards the central axis of the cylinder) for the inner surface. For the top surface, the vector is along the positive Z direction and for the bottom, it is along the negative Z direction.

http://citadel.sjfc.edu/faculty/kgreen/vector/block3/jacob/node4.html

https://www.youtube.com/watch?v=OTrh0VmbDO0

Karan Chatrath - 1 year, 3 months ago
Steven Chase
Feb 17, 2020

@Karan Chatrath has provided a nice detailed solution. I will post my code as well, since our styles are a bit different. One thing I like about the "step by step" approach in code is that I don't have to keep track of complicated expressions. I have printed results for one million partitions per sub-surface, and for one hundred million partitions per sub-surface.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import math

N = 10000     

q = 10.0
e0 = 1.0

k = 1.0/(4.0*math.pi*e0)

xT = 3.0/2.0
yT = 0.0
zT = 2.0/3.0

dtheta = 2.0*math.pi/N
dr = (2.0-1.0)/N
dz = (1.0 - 0.0)/N

########################################################################

# Top

nx = 0.0
ny = 0.0
nz = 1.0

phiT = 0.0

r = 1.0

while r <= 2.0:

    theta = 0.0

    while theta <= 2.0*math.pi:

        x = r*math.cos(theta)
        y = r*math.sin(theta)
        z = 1.0

        dS = r*dr*dtheta

        Dx = x - xT
        Dy = y - yT
        Dz = z - zT

        D = math.sqrt(Dx**2.0 + Dy**2.0 + Dz**2.0)

        ux = Dx/D
        uy = Dy/D
        uz = Dz/D

        E = k*q/(D**2.0)

        Ex = E * ux
        Ey = E * uy
        Ez = E * uz

        dot = Ex*nx + Ey*ny + Ez*nz

        phiT = phiT + dot*dS

        theta = theta + dtheta

    r = r + dr

########################################################################

# Bottom

nx = 0.0
ny = 0.0
nz = -1.0

phiB = 0.0

r = 1.0

while r <= 2.0:

    theta = 0.0

    while theta <= 2.0*math.pi:

        x = r*math.cos(theta)
        y = r*math.sin(theta)
        z = 0.0

        dS = r*dr*dtheta

        Dx = x - xT
        Dy = y - yT
        Dz = z - zT

        D = math.sqrt(Dx**2.0 + Dy**2.0 + Dz**2.0)

        ux = Dx/D
        uy = Dy/D
        uz = Dz/D

        E = k*q/(D**2.0)

        Ex = E * ux
        Ey = E * uy
        Ez = E * uz

        dot = Ex*nx + Ey*ny + Ez*nz

        phiB = phiB + dot*dS

        theta = theta + dtheta

    r = r + dr

########################################################################

# Outer

phiO = 0.0

z = 0.0
r = 2.0

while z <= 1.0:

    theta = 0.0

    while theta <= 2.0*math.pi:

        x = r*math.cos(theta)
        y = r*math.sin(theta)

        dS = r*dtheta*dz

        nx = x/r
        ny = y/r
        nz = 0.0

        Dx = x - xT
        Dy = y - yT
        Dz = z - zT

        D = math.sqrt(Dx**2.0 + Dy**2.0 + Dz**2.0)

        ux = Dx/D
        uy = Dy/D
        uz = Dz/D

        E = k*q/(D**2.0)

        Ex = E * ux
        Ey = E * uy
        Ez = E * uz

        dot = Ex*nx + Ey*ny + Ez*nz

        phiO = phiO + dot*dS

        theta = theta + dtheta

    z = z + dz

########################################################################

# Inner

phiI = 0.0

z = 0.0
r = 1.0

while z <= 1.0:

    theta = 0.0

    while theta <= 2.0*math.pi:

        x = r*math.cos(theta)
        y = r*math.sin(theta)

        dS = r*dtheta*dz

        nx = -x/r
        ny = -y/r
        nz = 0.0

        Dx = x - xT
        Dy = y - yT
        Dz = z - zT

        D = math.sqrt(Dx**2.0 + Dy**2.0 + Dz**2.0)

        ux = Dx/D
        uy = Dy/D
        uz = Dz/D

        E = k*q/(D**2.0)

        Ex = E * ux
        Ey = E * uy
        Ez = E * uz

        dot = Ex*nx + Ey*ny + Ez*nz

        phiI = phiI + dot*dS

        theta = theta + dtheta

    z = z + dz

########################################################################

print N
print ""
print phiT
print phiB
print phiO
print phiI
print ""
num = phiT * phiB * phiO * phiI
denom = phiT + phiB + phiO + phiI

print denom
print (num/denom)

########################################################################

#1000

#3.20988469921
#2.12667606634
#3.84825504409
#0.908807889705

#10.0936236993
#2.36526389424

########################################################################

#10000

#3.17109071653
#2.11175697673
#3.82215361712
#0.895633013466

#10.0006343239
#2.2922568955

I personally prefer a code based approach. However, going the symbolic route was a nice change.

Out of curiosity, how long does it take for your code to run? Whenever I solve multiple integrals such as these on my machine, a numerical resoloution of N = 10000 N=10000 is a long wait.

Karan Chatrath - 1 year, 3 months ago

Yeah, it took probably 20 minutes to run with N = 10000 N = 10000 . So I just do something else for a while as it runs. I think Python is a particularly slow program too, but I don't care. It would be interesting to run in C and compare the speed

Steven Chase - 1 year, 3 months ago

Log in to reply

I think the long run time has more to do with processing capabilities of a machine than the choice of language. I will try this approach with MATLAB and see how long it takes, later, to know better.

Karan Chatrath - 1 year, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...