For all a , b , c , d are positive integers, a < b < c < d .
( ∏ i , j ∈ ( a , b , c , d ) ; i < j g c d ( i , j ) ) x 2 ( ∏ i , j , k ∈ ( a , b , c , d ) ; i < j < k g c d ( i , j , k ) ) x 3 g c d ( a , b , c , d ) x 4 = l c m ( a , b , c , d ) y 4 ( ∏ i , j ∈ ( a , b , c , d ) ; i < j l c m ( i , j ) ) y 2 ( ∏ i , j , k ∈ ( a , b , c , d ) ; i < j < k l c m ( i , j , k ) ) y 3 Equivalently: ( ( g c d ( a , b ) g c d ( a , c ) . . . g c d ( c , d ) ) x 2 ( g c d ( a , b , c ) g c d ( a , b , d ) g c d ( a , c , d ) g c d ( b , c , d ) ) x 3 g c d ( a , b , c , d ) x 4 = l c m ( a , b , c , d ) y 4 ( l c m ( a , b ) l c m ( a , c ) . . . l c m ( c , d ) ) y 2 ( l c m ( a , b , c ) l c m ( a , b , d ) l c m ( a , c , d ) l c m ( b , c , d ) ) y 3 )
for positive integers x 2 , x 3 , x 4 , y 2 , y 3 , y 4 .
What is the minimum value of x 2 + x 3 + x 4 + y 2 + y 3 + y 4 ?
Based on the problem behind GCM and LCM .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let g c d ( a , b , c , d ) = S ,
g c d ( a , b , c ) = S S a b c , g c d ( a , b , d ) = S S a b d , . . . e t c ,
g c d ( a , b ) = S S a b c S a b d S a b , g c d ( a , c ) = S S a b c S a c d S a c , . . . e t c ,
a = S S a b c S a b d S a c d S a b S a c S a d A , b = S S a b c S a b d S b c d S a b S b c S b d B , . . . e t c ,
S 3 = S a b c S a b d S a c d S b c d ,
S 2 = S a b S a c . . . S c d ,
S 1 = A B C D .
l c m ( a , b , c , d ) = S S 3 S 2 S 1 .
l c m ( a , b , c ) = D l c m ( a , b , c , d ) .
l c m ( a , b ) = S c d C D l c m ( a , b , c , d ) .
( ∏ i , j ∈ ( a , b , c , d ) ; i < j g c d ( i , j ) ) x 2 ( ∏ i , j , k ∈ ( a , b , c , d ) ; i < j < k g c d ( i , j , k ) ) x 3 g c d ( a , b , c , d ) x 4 = ( S 6 S 3 3 S 2 ) x 2 ( S 4 S 3 ) x 3 S x 4 ,
l c m ( a , b , c , d ) y 4 ( ∏ i , j ∈ ( a , b , c , d ) ; i < j l c m ( i , j ) ) y 2 ( ∏ i , j , k ∈ ( a , b , c , d ) ; i < j < k l c m ( i , j , k ) ) y 3 = ( S S 3 S 2 S 1 ) y 4 ( S 6 S 3 6 S 2 5 S 1 3 ) y 2 ( S 4 S 3 4 S 2 4 S 1 3 ) y 3 .
Comparing orders of:
S 1 : 0 = 3 y 3 − ( y 4 + 3 y 2 ) , so y 4 = 3 ( y 3 − y 2 )
S 2 : x 2 = − 4 y 3 + ( y 4 + 5 y 2 ) = − y 3 + 2 y 2
S 3 : − 3 x 2 − x 3 = 4 y 3 − ( y 4 + 6 y 2 ) , so x 3 = − 3 x 2 − 4 y 3 + ( y 4 + 6 y 2 ) = 2 y 3 − 3 y 2
S : x 4 − ( 6 x 2 + 4 x 3 ) = 4 y 3 − ( y 4 + 6 y 2 ) , so x 4 = 6 x 2 + 4 x 3 + 4 y 3 − ( y 4 + 6 y 2 ) = 3 ( y 3 − y 2 ) .
These are all positive integers, so 0 < 3 y 2 < 2 y 3 < 4 y 2 .
The sum x 2 + x 3 + x 4 + y 2 + y 3 + y 4 = ( y 3 − 2 y 2 ) + ( 2 y 3 − 3 y 2 ) + ( 3 y 3 + 3 y 2 ) + y 2 + y 3 + ( 3 y 3 − 3 y 2 ) = 8 y 3 − 6 y 2 .
Note, 4 y 3 < 8 y 3 − 6 y 2 < 5 y 3 .
The smallest value of y 3 that fits in ( 3 y 2 , 4 y 2 ) for some y 2 , is y 3 = 5 , with y 2 = 3 .
8 y 3 − 6 y 2 = 2 2 in this case. Note, for larger values of y 3 , 8 y 3 − 6 y 2 > 2 4 > 2 2 .
Hence, 2 2 is the minimum.
(In this case, x 2 = 1 , x 3 = 1 , x 4 = 6 , y 2 = 3 , y 3 = 5 , y 4 = 6 ).