GCD and LCM 2

For all a , b , c , d a, b, c, d are positive integers, a < b < c < d a < b < c < d .

g c d ( a , b , c , d ) x 4 ( i , j ( a , b , c , d ) ; i < j g c d ( i , j ) ) x 2 ( i , j , k ( a , b , c , d ) ; i < j < k g c d ( i , j , k ) ) x 3 = ( i , j , k ( a , b , c , d ) ; i < j < k l c m ( i , j , k ) ) y 3 l c m ( a , b , c , d ) y 4 ( i , j ( a , b , c , d ) ; i < j l c m ( i , j ) ) y 2 \frac{gcd(a,b,c,d)^{x_4} }{ \left (\prod_{i,j \in (a,b,c,d); i < j} gcd(i,j) \right )^{x_2} \left (\prod_{i,j,k \in (a,b,c,d); i < j < k} gcd(i,j,k) \right )^{x_3} }= \frac{ \left (\prod_{i,j,k \in (a,b,c,d); i < j < k} lcm(i,j,k) \right )^{y_3}}{lcm(a,b,c,d)^{y_4} \left (\prod_{i,j \in (a,b,c,d); i < j} lcm(i,j) \right )^{y_2}} Equivalently: ( g c d ( a , b , c , d ) x 4 ( g c d ( a , b ) g c d ( a , c ) . . . g c d ( c , d ) ) x 2 ( g c d ( a , b , c ) g c d ( a , b , d ) g c d ( a , c , d ) g c d ( b , c , d ) ) x 3 = ( l c m ( a , b , c ) l c m ( a , b , d ) l c m ( a , c , d ) l c m ( b , c , d ) ) y 3 l c m ( a , b , c , d ) y 4 ( l c m ( a , b ) l c m ( a , c ) . . . l c m ( c , d ) ) y 2 ) \left ( \frac{gcd(a,b,c,d)^{x_4} }{ \left ( gcd(a,b) gcd(a,c) ... gcd(c,d) \right )^{x_2} \left (gcd(a,b,c) gcd(a,b,d) gcd(a,c,d) gcd(b,c,d) \right )^{x_3} }= \frac{ \left (lcm(a,b,c) lcm(a,b,d) lcm(a,c,d) lcm(b,c,d) \right )^{y_3}}{lcm(a,b,c,d)^{y_4} \left (lcm(a,b) lcm(a,c) ... lcm(c,d)\right )^{y_2}} \right )

for positive integers x 2 , x 3 , x 4 , y 2 , y 3 , y 4 x_2, x_3, x_4, y_2, y_3, y_4 .

What is the minimum value of x 2 + x 3 + x 4 + y 2 + y 3 + y 4 x_2 + x_3 + x_4 + y_2 + y_3 + y_4 ?

Based on the problem behind GCM and LCM .


The answer is 22.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alex Burgess
Apr 29, 2019

Let g c d ( a , b , c , d ) = S gcd(a,b,c,d) = S ,

g c d ( a , b , c ) = S S a b c gcd(a,b,c) = S S_{abc} , g c d ( a , b , d ) = S S a b d , . . . e t c gcd(a,b,d) = S S_{abd}, ... etc ,

g c d ( a , b ) = S S a b c S a b d S a b gcd(a,b) = S S_{abc} S_{abd} S_{ab} , g c d ( a , c ) = S S a b c S a c d S a c , . . . e t c gcd(a,c) = S S_{abc} S_{acd} S_{ac}, ... etc ,

a = S S a b c S a b d S a c d S a b S a c S a d A , b = S S a b c S a b d S b c d S a b S b c S b d B , . . . e t c a = S S_{abc} S_{abd} S_{acd} S_{ab} S_{ac} S_{ad} A, b = S S_{abc} S_{abd} S_{bcd} S_{ab} S_{bc} S_{bd} B, ... etc ,

S 3 = S a b c S a b d S a c d S b c d S_3 = S_{abc} S_{abd} S_{acd} S_{bcd} ,

S 2 = S a b S a c . . . S c d S_2 = S_{ab} S_{ac} ... S_{cd} ,

S 1 = A B C D S_1 = ABCD .


l c m ( a , b , c , d ) = S S 3 S 2 S 1 . lcm(a,b,c,d) = S S_3 S_2 S_1.

l c m ( a , b , c ) = l c m ( a , b , c , d ) D . lcm(a,b,c) = \frac{lcm(a,b,c,d)}{D}.

l c m ( a , b ) = l c m ( a , b , c , d ) S c d C D . lcm(a,b) = \frac{lcm(a,b,c,d)}{S_{cd} C D}.


g c d ( a , b , c , d ) x 4 ( i , j ( a , b , c , d ) ; i < j g c d ( i , j ) ) x 2 ( i , j , k ( a , b , c , d ) ; i < j < k g c d ( i , j , k ) ) x 3 = S x 4 ( S 6 S 3 3 S 2 ) x 2 ( S 4 S 3 ) x 3 , \frac{gcd(a,b,c,d)^{x_4} }{ (\prod_{i,j \in (a,b,c,d); i < j} gcd(i,j))^{x_2}(\prod_{i,j,k \in (a,b,c,d); i < j < k} gcd(i,j,k))^{x_3} } = \frac{S^{x_4} }{(S^6 S_3^3 S_2)^{x_2} (S^4 S_3)^{x_3} },

( i , j , k ( a , b , c , d ) ; i < j < k l c m ( i , j , k ) ) y 3 l c m ( a , b , c , d ) y 4 ( i , j ( a , b , c , d ) ; i < j l c m ( i , j ) ) y 2 = ( S 4 S 3 4 S 2 4 S 1 3 ) y 3 ( S S 3 S 2 S 1 ) y 4 ( S 6 S 3 6 S 2 5 S 1 3 ) y 2 . \frac{(\prod_{i,j,k \in (a,b,c,d); i < j < k} lcm(i,j,k))^{y_3} }{lcm(a,b,c,d)^{y_4} (\prod_{i,j \in (a,b,c,d); i < j} lcm(i,j))^{y_2}} = \frac{(S^4 S_3^4 S_2^4 S_1^3)^{y_3} }{ (S S_3 S_2 S_1)^{y_4} (S^6 S_3^6 S_2^5 S_1^3)^{y_2} }.

Comparing orders of:

S 1 : 0 = 3 y 3 ( y 4 + 3 y 2 ) S_1: 0 = 3y_3 - (y_4 + 3y_2) , so y 4 = 3 ( y 3 y 2 ) y_4 = 3(y_3 - y_2)

S 2 : x 2 = 4 y 3 + ( y 4 + 5 y 2 ) = y 3 + 2 y 2 S_2: x_2 = -4y_3 + (y_4 + 5y_2) = -y_3 + 2y_2

S 3 : 3 x 2 x 3 = 4 y 3 ( y 4 + 6 y 2 ) S_3: -3x_2 - x_3 = 4y_3 - (y_4 + 6y_2) , so x 3 = 3 x 2 4 y 3 + ( y 4 + 6 y 2 ) = 2 y 3 3 y 2 x_3 = -3x_2 - 4y_3 + (y_4 + 6y_2) = 2y_3 - 3y_2

S : x 4 ( 6 x 2 + 4 x 3 ) = 4 y 3 ( y 4 + 6 y 2 ) S: x_4 - (6x_2 + 4x_3) = 4y_3 - (y_4 + 6y_2) , so x 4 = 6 x 2 + 4 x 3 + 4 y 3 ( y 4 + 6 y 2 ) = 3 ( y 3 y 2 ) x_4 = 6x_2 + 4x_3 + 4y_3 - (y_4 + 6y_2) = 3(y_3 - y_2) .

These are all positive integers, so 0 < 3 y 2 < 2 y 3 < 4 y 2 0 < 3y_2 < 2y_3 < 4y_2 .

The sum x 2 + x 3 + x 4 + y 2 + y 3 + y 4 = ( y 3 2 y 2 ) + ( 2 y 3 3 y 2 ) + ( 3 y 3 + 3 y 2 ) + y 2 + y 3 + ( 3 y 3 3 y 2 ) = 8 y 3 6 y 2 x_2 + x_3 + x_4 + y_2 + y_3 + y_4 = (y_3 - 2y_2) + (2y_3 - 3y_2) + (3y_3 + 3y_2) + y_2 + y_3 + (3y_3 - 3y_2) = 8y_3 - 6y_2 .

Note, 4 y 3 < 8 y 3 6 y 2 < 5 y 3 4y_3 < 8y_3 - 6y_2 < 5y_3 .

The smallest value of y 3 y_3 that fits in ( 3 y 2 , 4 y 2 ) (3y_2, 4y_2) for some y 2 y_2 , is y 3 = 5 y_3 = 5 , with y 2 = 3 y_2 = 3 .

8 y 3 6 y 2 = 22 8y_3 - 6y_2 = 22 in this case. Note, for larger values of y 3 y_3 , 8 y 3 6 y 2 > 24 > 22 8y_3 - 6y_2 > 24 > 22 .


Hence, 22 22 is the minimum.


(In this case, x 2 = 1 , x 3 = 1 , x 4 = 6 , y 2 = 3 , y 3 = 5 , y 4 = 6 x_2 = 1, x_3 = 1, x_4 = 6, y_2 = 3, y_3 = 5, y_4 = 6 ).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...