GCD and LCM

If a , b , c a,b,c are positive integers, which of the following two numbers is larger?

( gcd ( a , b , c ) ) 2 gcd ( a , b ) gcd ( a , c ) gcd ( b , c ) \frac{(\gcd (a, b, c))^2}{\gcd (a, b)\gcd (a, c) \gcd (b, c)} ( lcm ( a , b , c ) ) 2 lcm ( a , b ) lcm ( a , c ) lcm ( b , c ) \frac{(\text{lcm}(a, b, c))^2}{\text{lcm}(a, b)\text{lcm}(a, c) \text{lcm}(b, c)} They are equal Not enough information

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Advait Nene
Apr 21, 2020

Let a = i = 1 n p i a i , b = i = 1 n p i b i , c = i = 1 n p i c i , a=\prod\limits_{i=1}^{n}p_{i}^{a_{i}}, b=\prod\limits_{i=1}^{n}p_{i}^{b_{i}}, c=\prod\limits_{i=1}^{n}p_{i}^{c_{i}}, for primes p i p_{i} .

( gcd ( a , b , c ) ) 2 gcd ( a , b ) gcd ( b , c ) gcd ( c , a ) = i = 1 n p i 2 min ( a i , b i , c i ) min ( a i , b i ) min ( b i , c i ) min ( c i , a i ) \frac{(\gcd(a,b,c))^{2}}{\gcd(a,b)\gcd(b,c)\gcd(c,a)}=\prod\limits_{i=1}^{n}p_{i}^{2\min(a_{i},b_{i},c_{i})-\min(a_{i},b_{i})-\min(b_{i},c_{i})-\min(c_{i},a_{i})} ( l c m ( a , b , c ) ) 2 l c m ( a , b ) l c m ( b , c ) l c m ( c , a ) = i = 1 n p i 2 max ( a i , b i , c i ) max ( a i , b i ) max ( b i , c i ) max ( c i , a i ) \frac{(lcm(a,b,c))^{2}}{lcm(a,b)lcm(b,c)lcm(c,a)}=\prod\limits_{i=1}^{n}p_{i}^{2\max(a_{i},b_{i},c_{i})-\max(a_{i},b_{i})-\max(b_{i},c_{i})-\max(c_{i},a_{i})}

WLOG, for some value of i i , say a i b i c i a_{i}\leq b_{i}\leq c_{i} . Then, 2 min ( a i , b i , c i ) min ( a i , b i ) min ( b i , c i ) min ( c i , a i ) = 2 a i a i b i a i = b i 2\min(a_{i},b_{i},c_{i})-\min(a_{i},b_{i})-\min(b_{i},c_{i})-\min(c_{i},a_{i})=2a_{i}-a_{i}-b_{i}-a_{i}=-b_{i} and 2 max ( a i , b i , c i ) max ( a i , b i ) max ( b i , c i ) max ( c i , a i ) = 2 c i b i c i c i = b i 2\max(a_{i},b_{i},c_{i})-\max(a_{i},b_{i})-\max(b_{i},c_{i})-\max(c_{i},a_{i})=2c_{i}-b_{i}-c_{i}-c_{i}=-b_{i} Therefore, the exponents on each p i p_{i} are equal in both expressions, as each expression is symmetric in a i , b i , c i a_{i},b_{i},c_{i} , so both expressions are equal.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...