GCD of Linear Combinations

Number Theory Level pending

True or False?

If X = a x + b y X=ax+by and Y = a x + b y Y=a^\prime x+ b^\prime y , where a b a b = 1 ab^\prime - a^\prime b=1 , then gcd ( x , y ) = gcd ( X , Y ) \gcd(x,y)=\gcd(X,Y) .

Notation and Assumption:

  • gcd ( ) \gcd(\cdot) denotes the greatest common divisor function.

  • All of X , Y , x , y , a , b , a X,Y, x, y, a, b, a^\prime and b b^\prime are positive integers.

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The proposition is TRUE .

To establish the equality g c d ( x , y ) = g c d ( X , Y ) gcd(x,y)=gcd(X,Y) , we'll show:

For any positive integer d d , d x d \mid x and d y d \mid y \iff d X d \mid X and d Y d \mid Y . In other words, if d d is a common divisor of x x and y y , then it's also a common divisor of X X and Y Y ; and if d d is a common divisor of X X and Y Y , then it's also a common divisor of x x and y y .


Proof of If d d is a common divisor of x x and y y , then it's also a common divisor of X X and Y Y .

We have, d x d \mid x . Then d a x d \mid ax and d a x d \mid a^\prime x , for any integers a a and a a^\prime .

We also have, d y d \mid y . Then d b y d \mid by and d b y d \mid b^\prime y , for any integers b b and b b^\prime .

So, d a x + b y = X d \mid ax+by=X and d a x + b y = Y d \mid a^\prime x + b^\prime y=Y , as required.


Proof of If d d is a common divisor of X X and Y Y , then it's also a common divisor of x x and y y .

d X = a x + b y d \mid X=ax+by and d Y = a x + b y d | Y=a^\prime x+ b^\prime y .

But d a x + b y d b ( a x + b y ) = a b x + b b y d \mid ax+by \implies d\mid b^\prime(ax+by)=ab^\prime x+bb^\prime y .

And d a x + b y d b ( a x + b y ) = a b x + b b y d \mid a^\prime x+b^\prime y \implies d\mid b(a^\prime x+b^\prime y)=a^\prime bx+bb^\prime y .

Now, d a b x + b b y d\mid ab^\prime x+bb^\prime y and d a b x + b b y d ( a b x + b b y ) ( a b x + b b y ) = ( a b a b ) x = x d\mid a^\prime bx+bb^\prime y \implies d \mid (ab^\prime x+bb^\prime y)-(a^\prime bx+bb^\prime y)=(ab^\prime-a^\prime b)x=x [As a b a b = 1 ab^\prime - a^\prime b=1 ].

So, d x d \mid x . Similarly, d y d \mid y . \square

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...