Oscillating Infinite Continued Fractions

What is the equation for oscillating infinite continued fractions of type [ 1 ; m , n , m , n , m , n , . . . ] [1; m, n, m, n, m, n, ...] as shown below?

1 + 1 m + 1 n + 1 m + 1 n + . . . \Large 1 + \frac{1}{m + \frac{1}{n + \frac{1}{m + \frac{1}{n + ...}}}}

m n ( m n + 4 ) m n + 2 m 2 m \frac{\sqrt{mn(mn + 4)} - mn + 2m}{2m} 5 n 2 + 3 m 1 + 3 m n n 2 n m + 1 \frac{\sqrt{5n^2 + 3m - 1} + 3mn - n}{2nm + 1} 3 m n ( n 1 ) + 2 m 2 n + 2 m + n 1 \frac{\sqrt{3mn(n - 1)} + 2m - 2n + 2}{m + n - 1} There is no such equation m n + 2 m + 2 n + 1 + 2 m + 1 2 n + 1 \frac{\sqrt{mn + 2m + 2n + 1} + 2m + 1}{2n + 1} 9 n ( 3 m n + 7 ) 4 m n 2 2 3 n 2 \frac{\sqrt{9n(3mn + 7)} - 4mn^2 - 2}{3n^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Dwaipayan Shikari
Nov 22, 2020

Let's take,

1 m + 1 n + 1 m + 1 = a \frac{1}{m+\frac{1}{n+\frac{1}{m+\frac{1}{\cdots}}}} = a

So we can say that a = 1 m + 1 n + a \textrm{ So we can say that } a = \frac{1}{m+\frac{1}{n+a}}

So , n + a m n + a m + 1 = a \frac{n+a}{mn+am+1} = a

m a 2 + m n a n = 0 ma^2 +mna-n =0

a = m n + ( m 2 n 2 + 4 m n ) 2 m a = \frac{-mn +(\sqrt{m^2n^2 +4mn})}{2m}

Answer is 1 + a = m n ( m n + 4 ) m n + 2 m 2 m 1+a =\boxed{\frac{\sqrt{mn(mn+4)}-mn+2m}{2m}}

Chew-Seong Cheong
Nov 18, 2020

Let

1 + x = 1 + 1 m + 1 n + 1 m + 1 n + x = 1 m + 1 n + 1 m + 1 n + = 1 m + 1 n + x = n + x m x + m n + 1 m x 2 + m n x + x = n + x m x 2 + m n x n = 0 x = m 2 n 2 + 4 m n m n 2 m 1 + x = m n ( m n + 4 ) m n + 2 m 2 m \large \begin{aligned} 1 + x & = 1 + \frac 1{m+\frac 1{n+\frac 1{m+\frac 1{n + \cdots}}}} \\ x & = \frac 1{m+\frac 1{n+\frac 1{m+\frac 1{n + \cdots}}}} \\ & = \frac 1{m+\frac 1{n+x}} \\ & = \frac {n+x}{mx+mn+1} \\ mx^2 + mnx + x & = n+x \\ mx^2 + mnx - n & = 0 \\ \implies x & = \frac {\sqrt{m^2n^2+4mn}-mn}{2m} \\ \implies 1+x & = \boxed{\frac {\sqrt{mn(mn+4)}-mn+2m}{2m}} \end{aligned}

Jonathan Pappas
Nov 18, 2020

I started out by finding a pattern for [ 1 ; 1 , n , 1 , n , 1 , n , . . . ] [1;1,n,1,n,1,n,...]

  • 1 + 1 1 + 1 1 + 1 1 + 1 1 + . . . = 1.618033988749895 = 5 + 1 2 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + ...}}}} = 1.618033988749895 = \frac{\sqrt{5} + 1}{2}
  • 1 + 1 1 + 1 2 + 1 1 + 1 2 + . . . = 1.7320508075688772 = 12 0 2 1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{2 + ...}}}} = 1.7320508075688772 = \frac{\sqrt{12} - 0}{2}
  • 1 + 1 1 + 1 3 + 1 1 + 1 3 + . . . = 1.79128784747792 = 21 1 2 1 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{3 + ...}}}} = 1.79128784747792 = \frac{\sqrt{21} - 1}{2}
  • 1 + 1 1 + 1 4 + 1 1 + 1 4 + . . . = 1.8284271247461903 = 32 2 2 1 + \frac{1}{1 + \frac{1}{4 + \frac{1}{1 + \frac{1}{4 + ...}}}} = 1.8284271247461903 = \frac{\sqrt{32} - 2}{2}
  • 1 + 1 1 + 1 5 + 1 1 + 1 5 + . . . = 1.8541019662496847 = 45 3 2 1 + \frac{1}{1 + \frac{1}{5 + \frac{1}{1 + \frac{1}{5 + ...}}}} =1.8541019662496847 = \frac{\sqrt{45} - 3}{2}

etc.

I found this equal to n ( n + 4 ) n + 2 2 \frac{\sqrt{n(n + 4)} - n + 2}{2}

Then, when looking at other patterns, I found a larger pattern:

  • [ 1 ; 1 , n , 1 , n , 1 , n , . . . ] = 1 n ( 1 n + 4 ) 1 n + 2 2 [1;1,n,1,n,1,n,...] = \frac{\sqrt{1n(1n + 4)} - 1n + 2}{2}

  • [ 1 ; 2 , n , 2 , n , 2 , n , . . . ] = 2 n ( 2 n + 4 ) 2 n + 4 4 [1;2,n,2,n,2,n,...] = \frac{\sqrt{2n(2n + 4)} - 2n + 4}{4}

  • [ 1 ; 3 , n , 3 , n , 3 , n , . . . ] = 3 n ( 3 n + 4 ) 3 n + 6 6 [1;3,n,3,n,3,n,...] = \frac{\sqrt{3n(3n + 4)} - 3n + 6}{6}

  • [ 1 ; 4 , n , 4 , n , 4 , n , . . . ] = 4 n ( 4 n + 4 ) 4 n + 8 8 [1;4,n,4,n,4,n,...] = \frac{\sqrt{4n(4n + 4)} - 4n + 8}{8}

  • [ 1 ; 5 , n , 5 , n , 5 , n , . . . ] = 5 n ( 5 n + 4 ) 5 n + 10 10 [1;5,n,5,n,5,n,...] = \frac{\sqrt{5n(5n + 4)} - 5n + 10}{10}

  • [ 1 ; 6 , n , 6 , n , 6 , n , . . . ] = 6 n ( 6 n + 4 ) 6 n + 12 12 [1;6,n,6,n,6,n,...] = \frac{\sqrt{6n(6n + 4)} - 6n + 12}{12}

etc.

From this pattern, you can ascertain:

  • [ 1 ; m , n , m , n , m , n , . . . ] = m n ( m n + 4 ) m n + 2 m 2 m [1;m,n,m,n,m,n,...] = \frac{\sqrt{mn(mn + 4)} - mn + 2m}{2m}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...