What is the equation for oscillating infinite continued fractions of type [ 1 ; m , n , m , n , m , n , . . . ] as shown below?
1 + m + n + m + n + . . . 1 1 1 1
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let
1 + x x m x 2 + m n x + x m x 2 + m n x − n ⟹ x ⟹ 1 + x = 1 + m + n + m + n + ⋯ 1 1 1 1 = m + n + m + n + ⋯ 1 1 1 1 = m + n + x 1 1 = m x + m n + 1 n + x = n + x = 0 = 2 m m 2 n 2 + 4 m n − m n = 2 m m n ( m n + 4 ) − m n + 2 m
I started out by finding a pattern for [ 1 ; 1 , n , 1 , n , 1 , n , . . . ]
etc.
I found this equal to 2 n ( n + 4 ) − n + 2
Then, when looking at other patterns, I found a larger pattern:
[ 1 ; 1 , n , 1 , n , 1 , n , . . . ] = 2 1 n ( 1 n + 4 ) − 1 n + 2
[ 1 ; 2 , n , 2 , n , 2 , n , . . . ] = 4 2 n ( 2 n + 4 ) − 2 n + 4
[ 1 ; 3 , n , 3 , n , 3 , n , . . . ] = 6 3 n ( 3 n + 4 ) − 3 n + 6
[ 1 ; 4 , n , 4 , n , 4 , n , . . . ] = 8 4 n ( 4 n + 4 ) − 4 n + 8
[ 1 ; 5 , n , 5 , n , 5 , n , . . . ] = 1 0 5 n ( 5 n + 4 ) − 5 n + 1 0
[ 1 ; 6 , n , 6 , n , 6 , n , . . . ] = 1 2 6 n ( 6 n + 4 ) − 6 n + 1 2
etc.
From this pattern, you can ascertain:
Problem Loading...
Note Loading...
Set Loading...
Let's take,
m + n + m + ⋯ 1 1 1 1 = a
So we can say that a = m + n + a 1 1
So , m n + a m + 1 n + a = a
m a 2 + m n a − n = 0
a = 2 m − m n + ( m 2 n 2 + 4 m n )
Answer is 1 + a = 2 m m n ( m n + 4 ) − m n + 2 m