Generalise it first

Calculus Level 4

1 x ln ( t ) 1 + t d t \large \displaystyle \int_{1}^{x} \dfrac{\ln(t)}{1+t} \, dt

For x > 0 x>0 , let f ( x ) f(x) describe the function above.

Evaluate f ( e ) + f ( 1 e ) f(e) + f \left( \frac 1e \right) .

This problem is a part of the set Advanced is basic .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Abhishek Sinha
May 19, 2015

Define ψ ( x ) = f ( x ) + f ( 1 / x ) \psi(x)=f(x)+f(1/x) Differentiating both sides w.r.t. x x using generalized Leibniz integral rule , we have ψ ( x ) = ln x 1 + x + ln ( 1 / x ) 1 + 1 / x . 1 x 2 = ln ( x ) x \psi'(x)=\frac{\ln x}{1+x} + \frac{\ln(1/x)}{1+1/x}. -\frac{1}{x^2}=\frac{\ln(x)}{x} Hence, ψ ( x ) = ln ( x ) x d x = 1 2 ln 2 ( x ) + C \psi(x)= \int \frac{\ln(x)}{x} dx = \frac{1}{2}\ln^2(x)+C where C C is the constant of integration. Putting x = 1 x=1 , we see that the lower and upper limits of both the integrals coincide (1). Hence ψ ( 1 ) = 0 \psi(1)=0 . This in turn implies that C = 0 C=0 and hence ψ ( x ) = 1 2 ln 2 ( x ) \psi(x)= \frac{1}{2}\ln^2(x) We require f ( e ) + f ( 1 / e ) = ψ ( e ) = 1 2 f(e)+f(1/e)=\psi(e)=\frac{1}{2}\hspace{5pt} \blacksquare

Aman Rajput
May 20, 2015

f ( e ) + f ( 1 / e ) = 1 e l n t t + 1 d t + 1 1 / e l n t t + 1 d t f(e)+f(1/e)=\int\limits_1^e \frac{lnt}{t+1}dt + \int\limits_{1}^{1/e} \frac{lnt}{t+1}dt

put t = 1 / u t=1/u in the second integral and you will get,

= 1 e l n t t + 1 d t + 1 e l n u u ( u + 1 ) d u =\int\limits_1^e \frac{lnt}{t+1}dt + \int\limits_1^e \frac{lnu}{u(u+1)}du = 1 e l n t t d t = 1 / 2 =\int\limits_1^e \frac{lnt}{t}dt =1/2

using a b f ( x ) d x = a b f ( t ) d t \int\limits_a^b f(x)dx=\int\limits_a^b f(t)dt

Use substitution for t=1/z.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...