Generalize this (part-2)

Geometry Level 3

tan 1 ( 1 1 + 1 2 ) + tan 1 ( 1 1 + 2 3 ) + + tan 1 ( 1 1 + n ( n + 1 ) ) \large\tan^{-1} \left(\dfrac{1}{1 + 1\cdot2}\right) + \tan^{-1} \left(\dfrac{1}{1 + 2\cdot3}\right) + \cdots +\tan^{-1} \left(\dfrac{1}{1 + n(n+1)}\right) If above expression is equal to tan 1 θ \tan^{-1}\theta ,then find θ \theta .

π 4 \dfrac{\pi}{4} n n + 2 \dfrac{n}{n+2} π 2 \dfrac{\pi}{2} None of these n + 1 n + 2 \dfrac{n+1}{n+2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akhil Bansal
Dec 11, 2015

= n = 1 n tan 1 ( 1 1 + n ( n + 1 ) ) \large = \displaystyle \sum_{n=1}^{n} \tan^{-1}\left(\dfrac{1}{1 + n(n+1)}\right) = n = 1 n tan 1 ( n + 1 n 1 + n ( n + 1 ) ) \large = \displaystyle \sum_{n=1}^{n} \tan^{-1}\left(\dfrac{n + 1 - n}{1 + n(n+1)}\right)

Using trigonometry identity,
tan 1 ( a b 1 + a b ) = tan 1 a tan 1 b \tan^{-1}\left( \dfrac{a - b }{1 + ab} \right) = \tan^{-1} a - \tan^{-1} b

= n = 1 n ( tan 1 ( n + 1 ) tan 1 ( n ) ) \large = \displaystyle \sum_{n=1}^{n} \left(\tan^{-1}\left(n+1\right) - \tan^{-1}( n)\right) = tan 1 ( n + 1 ) tan 1 ( 1 ) \large = \tan^{-1} \left(n+1\right) - \tan^{-1}(1) = tan 1 ( n n + 2 ) \large = \tan^{-1} \left(\dfrac{n}{n+2}\right)

Moderator note:

Can you state the important inverse tangent property that you repeatedly used here?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...