tan − 1 ( 1 + 1 ⋅ 2 1 ) + tan − 1 ( 1 + 2 ⋅ 3 1 ) + ⋯ + tan − 1 ( 1 + n ( n + 1 ) 1 ) If above expression is equal to tan − 1 θ ,then find θ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Can you state the important inverse tangent property that you repeatedly used here?
Problem Loading...
Note Loading...
Set Loading...
= n = 1 ∑ n tan − 1 ( 1 + n ( n + 1 ) 1 ) = n = 1 ∑ n tan − 1 ( 1 + n ( n + 1 ) n + 1 − n )
Using trigonometry identity,
tan − 1 ( 1 + a b a − b ) = tan − 1 a − tan − 1 b
= n = 1 ∑ n ( tan − 1 ( n + 1 ) − tan − 1 ( n ) ) = tan − 1 ( n + 1 ) − tan − 1 ( 1 ) = tan − 1 ( n + 2 n )