Generalise

Calculus Level 4

ξ = 0 π / 2 1 1 + tan a x d x ψ = 0 π / 2 1 1 + cot a x d x \large \color{#D61F06}{\xi} =\int _{ 0 }^{ { \pi }/{ 2 } }{ \cfrac { 1 }{ 1+\tan ^{ a }{ x } } } \, dx\\ \large \color{#3D99F6}{\psi} =\int _{ 0 }^{ { \pi }/{ 2 } }{ \cfrac { 1 }{ 1+\cot ^{ a }{ x } } } \, dx

We are given the two integrals ξ \color{#D61F06}{\xi} and ψ \color{#3D99F6}{\psi} , where a a is a positive integer .
Which of the following statements is/are true?

(A) : The value of ξ \color{#D61F06}{\xi} depends on the value of a a .

(B) : The value of ψ \color{#3D99F6}{\psi} does not depend on the value of a a .

(C) : ξ = ψ \color{#D61F06}{\xi}=\color{#3D99F6}{\psi} for all values of a a .


Inspiration from Matthew Scroggs .
A and B only A and C only A, B and C B only A only B and C only None C only

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Fuller
Jul 14, 2016

Firstly, consider ξ \color{#D61F06}{\xi} by multiplying the numerator and denominator by cos a x \cos^a x : ξ = 0 π / 2 1 1 + tan a x d x = 0 π / 2 cos a x cos a x + sin a x d x \large \color{#D61F06}{\xi} =\int _{ 0 }^{ { \pi }/{ 2 } }{ \cfrac { 1 }{ 1+\tan ^{ a }{ x } } } \, dx= \int _{ 0 }^{ { \pi }/{ 2 } }{ \cfrac { \cos^a x }{ \cos^a x+\sin ^{ a }{ x } } } \, dx Using the fact that a b f ( x ) d x = a b f ( a + b x ) d x \displaystyle \color{#3D99F6}{ \int _{ a }^{ b }{ f(x) } \, dx=\int _{ a }^{ b }{ f(a+b-x) } \, dx } (if you're not convinced, try the substitution u = a + b x u=a+b-x ), we can show: ξ = 0 π / 2 cos a ( π 2 x ) cos a ( π 2 x ) + sin a ( π 2 x ) d x = 0 π / 2 sin a x cos a x + sin a x d x \large \color{#D61F06}{\xi} =\int _{ 0 }^{ { \pi }/{ 2 } }{ \cfrac { \cos^a {\left(\dfrac{\pi}{2}-x \right)} }{ \cos^a {\left(\dfrac{\pi}{2}-x \right)}+\sin ^{ a }{\left(\dfrac{\pi}{2}-x \right)} } } \, dx = \int _{ 0 }^{ { \pi }/{ 2 } }{ \cfrac { \sin^a x }{ \cos^a x+\sin ^{ a }{ x } } } \, dx 2 ξ = 0 π / 2 cos a x + sin a x cos a x + sin a x d x = 0 π / 2 1 d x = π 2 ξ = π 4 \large \Rightarrow \quad 2 \color{#D61F06}{\xi} = \int _{ 0 }^{ { \pi }/{ 2 } }{ \cfrac { \cos^a x + \sin^a x }{ \cos^a x+\sin ^{ a }{ x } } } \, dx = \int _{ 0 }^{ { \pi }/{ 2 } }{ 1 } \, dx = \dfrac{\pi}{2} \quad \Rightarrow \quad \color{#D61F06}{\xi}=\dfrac{\pi}{4} Using the same logic, we can also see that ψ = π 4 \color{#3D99F6}{\psi}=\dfrac{\pi}{4} .

Thus (A) is false, (B) is true and (C) is true, and the correct answer is B & C \large \color{#20A900}{\boxed{ B \, \& \, C}} .

Great solution! Cheers :)

B.S.Bharath Sai Guhan - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...