Generating functions are fun

Calculus Level 4

1 + 3 x + 6 x 2 + 10 x 3 + 15 x 4 + 21 x 5 + = 1 1 A x + A x 2 B x 3 1 + 3x+ 6x^2 + 10x^3 + 15x^4 + 21x^5 + \cdots = \frac 1{1-Ax+Ax^2-Bx^3}

The equation above holds true for positive integers A A and B B . Find A + B A + B .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Easier solution by Brian Moehring

Consider the following for x < 1 |x|<1 , we have:

1 + x + x 2 + x 3 + x 4 + x 5 + = 1 1 x Differentiating both sides w.r.t. x 1 + 2 x + 3 x 2 + 4 x 3 + 5 x 4 + 6 x 5 + = 1 ( 1 x ) 2 Differentiating both sides again 2 + 6 x + 12 x 2 + 20 x 3 + 30 x 4 + 42 x 5 + = 2 ( 1 x ) 3 Dividing both sides by 2 1 + 3 x + 6 x 2 + 10 x 3 + 15 x 4 + 21 x 5 + = 1 ( 1 x ) 3 = 1 1 3 x + 3 x 2 x 3 \begin{aligned} 1+x+x^2+x^3+x^4+x^5+\cdots & = \frac 1{1-x} & \small \color{#3D99F6} \text{Differentiating both sides w.r.t. }x \\ 1+2x+3x^2+4x^3+5x^4+6x^5+ \cdots & = \frac 1{(1-x)^2} & \small \color{#3D99F6} \text{Differentiating both sides again} \\ 2+6x+12 x^2+20x^3+30x^4+42x^5+\cdots & = \frac 2{(1-x)^3} & \small \color{#3D99F6} \text{Dividing both sides by }2 \\ 1+3x+6x^2+10x^3+15x^4+21x^5+\cdots & = \frac 1{(1-x)^3} \\ & = \frac 1{1-3x+3x^2-x^3} \end{aligned}

A + B = 3 + 1 = 4 \implies A + B = 3+1 = \boxed{4}


My solution:

Consider the following for x < 1 |x|<1 , we have:

1 + x + x 2 + x 3 + x 4 + x 5 + = 1 1 x Multiplying both sides by x 2 x 2 + x 3 + x 4 + x 5 + x 6 + x 7 + = x 2 1 x Differentiating both sides w.r.t. x 2 x + 3 x 2 + 4 x 3 + 5 x 4 + 6 x 5 + 7 x 6 + = 2 x ( 1 x ) + x 2 ( 1 x ) 2 = 2 x x 2 ( 1 x ) 2 Differentiating both sides again 2 + 6 x + 12 x 2 + 20 x 3 + 30 x 4 + 42 x 5 + = ( 2 2 x ) ( 1 x ) + 4 x 2 x 2 ( 1 x ) 3 = 2 ( 1 x ) 3 Dividing both sides by 2 1 + 3 x + 6 x 2 + 10 x 3 + 15 x 4 + 21 x 5 + = 1 ( 1 x ) 3 = 1 1 3 x + 3 x 2 x 3 \begin{aligned} 1+x+x^2+x^3+x^4+x^5+\cdots & = \frac 1{1-x} & \small \color{#3D99F6} \text{Multiplying both sides by }x^2 \\ x^2+x^3+x^4+x^5 +x^6+x^7+\cdots & = \frac {x^2}{1-x} & \small \color{#3D99F6} \text{Differentiating both sides w.r.t. }x \\ 2x+3x^2+4x^3+5x^4+6x^5+7x^6+ \cdots & = \frac {2x(1-x)+x^2}{(1-x)^2} \\ & = \frac {2x-x^2}{(1-x)^2} & \small \color{#3D99F6} \text{Differentiating both sides again} \\ 2+6x+12 x^2+20x^3+30x^4+42x^5+\cdots & = \frac {(2-2x)(1-x)+4x-2x^2}{(1-x)^3} \\ & = \frac 2{(1-x)^3} & \small \color{#3D99F6} \text{Dividing both sides by }2 \\ 1+3x+6x^2+10x^3+15x^4+21x^5+\cdots & = \frac 1{(1-x)^3} \\ & = \frac 1{1-3x+3x^2-x^3} \end{aligned}

A + B = 3 + 1 = 4 \implies A + B = 3+1 = \boxed{4}

Just as a note: If you don't multiply by x 2 x^2 in the first step, but otherwise you do every other step the same, it's a little easier.

Brian Moehring - 4 years, 2 months ago

Log in to reply

Thanks, I will submit your solution.

Chew-Seong Cheong - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...