Generation partition

Calculus Level 3

Let the partition function P ( n ) P(n) enumerate the ways n n can be expressed as a distinct sum of positive integers, eg P ( 4 ) = 5 P(4) = 5 since 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1 are the only ways to represent 4 4 .

p prime [ n = 0 P ( n ) p n ( 1 1 p ) ] \prod_{p \ \text{prime}} \left[ \sum_{n=0}^{\infty} P(n)p^{-n}(1-\frac{1}{p}) \right]

Does the above product converge?

No Undecidable in ZFC Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Julian Poon
Aug 18, 2015

p p r i m e [ 1 1 p ] × p p r i m e n = 0 P ( n ) p n = p p r i m e [ 1 1 p ] × p p r i m e [ k = 1 [ 1 1 1 p k ] ] = p p r i m e [ 1 1 p ] × k = 1 [ p p r i m e [ 1 1 1 p k ] ] = p p r i m e [ 1 1 p ] × k = 1 [ n = 1 1 n k ] \prod _{ p{ prime } } \left[ 1-\frac { 1 }{ p } \right] \times \prod _{ p{ prime } } \sum _{ n=0 }^{ \infty } P(n)p^{ -n }=\prod _{ p{ prime } } \left[ 1-\frac { 1 }{ p } \right] \times \prod _{ p{ prime } } \left[ \prod _{ k=1 }^{ \infty }{ \left[ \frac { 1 }{ 1-\frac { 1 }{ { p }^{ k } } } \right] } \right] \\ =\prod _{ p{ prime } } \left[ 1-\frac { 1 }{ p } \right] \times \prod _{ k=1 }^{ \infty }{ \left[ \prod _{ p{ prime } } \left[ \frac { 1 }{ 1-\frac { 1 }{ { p }^{ k } } } \right] \right] } =\prod _{ p{ prime } } \left[ 1-\frac { 1 }{ p } \right] \times \prod _{ k=1 }^{ \infty }{ \left[ \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ k } } } \right] }

Since n = 1 1 n × p p r i m e [ 1 1 p ] = 1 \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n } } } \times \prod _{ p{ prime } } \left[ 1-\frac { 1 }{ p } \right] =1

p p r i m e [ 1 1 p ] × k = 1 [ n = 1 1 n k ] = k = 2 [ n = 1 1 n k ] = 2.294856591673313794183 \prod _{ p{ prime } } \left[ 1-\frac { 1 }{ p } \right] \times \prod _{ k=1 }^{ \infty }{ \left[ \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ k } } } \right] } =\prod _{ k=2 }^{ \infty }{ \left[ \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ k } } } \right] } = 2.294856591673313794183

Moderator note:

With infinite sequences, you have to be careful with your manipulation.

Since 1 n = \sum \frac{1}{n} = \infty , you have to explain how the product yields 1.

How do you know the final product converges? (Hint: n = 2 ( ζ ( n ) 1 ) = 1 \displaystyle \sum_{n=2}^{\infty} (\zeta(n)-1) = 1 .)

Jake Lai - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...