Geo geo

Geometry Level 3

In pentagon A B C D E ABCDE , points M , P , N M, P, N and Q Q are midpoints of A B , B C , C D AB, BC, CD and D E DE respectively. While points K K and L L are midpoints of Q P QP and M N MN respectively. If K L = 25 KL=25 , find the length of E A EA .

115 100 83 75

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
Sep 22, 2020

Let a \bold{a} represent the position vector of point A A , and so on. From the midpoint conditions on the sides: 2 m = a + b 2 p = b + c 2 n = c + d 2 q = d + e \begin{aligned} 2\bold{m} &= \bold{a}+\bold{b} \\ 2\bold{p} &= \bold{b}+\bold{c} \\ 2\bold{n} &= \bold{c}+\bold{d} \\ 2\bold{q} &= \bold{d}+\bold{e} \end{aligned}

Similarly, for K K and L L : 4 k = 2 p + 2 q = b + c + d + e 4 l = 2 m + 2 n = a + b + c + d \begin{aligned} 4\bold{k} &= 2\bold{p}+2\bold{q} =\bold{b}+\bold{c}+\bold{d}+\bold{e} \\ 4\bold{l} &= 2\bold{m}+2\bold{n} =\bold{a}+\bold{b}+\bold{c}+\bold{d} \end{aligned}

Subtracting, 4 ( k l ) = e a 4(\bold{k}-\bold{l})=\bold{e}-\bold{a}

Hence E A = e a = 4 k l = 4 K L = 100 EA=|\bold{e}-\bold{a}|=4|\bold{k}-\bold{l}|=4KL=\boxed{100} .

Not only that, but the lines K L KL and E A EA are parallel.

Let the position coordinates of A , B , C , D , E A, B, C, D, E be ( 0 , 0 ) , ( b , 0 ) , ( c 1 , c 2 ) , ( d 1 , d 2 ) , ( e 1 , e 2 ) (0,0),(b, 0),(c_1,c_2),(d_1,d_2),(e_1,e_2) respectively. Then those of M , N , P , Q , K , L M, N, P, Q, K, L are

( b 2 , 0 ) , ( c 1 + d 1 2 , c 2 + d 2 2 ) , ( b + c 1 2 , c 2 2 ) , ( d 1 + e 1 2 , d 2 + e 2 2 ) , ( b + c 1 + d 1 + e 1 4 , c 2 + d 2 + e 2 4 ) , ( b + c 1 + d 1 4 , c 2 + d 2 4 ) (\frac b2,0),(\frac{c_1+d_1}{2},\frac{c_2+d_2}{2}),(\frac{b+c_1}{2},\frac{c_2}{2}),(\frac{d_1+e_1}{2},\frac{d_2+e_2}{2}),(\frac{b+c_1+d_1+e_1}{4},\frac{c_2+d_2+e_2}{4}),(\frac{b+c_1+d_1}{4},\frac{c_2+d_2}{4}) respectively.

Hence, K L = e 1 2 + e 2 2 4 = 25 |\overline {KL}|=\dfrac {\sqrt {e_1^2+e_2^2}}{4}=25

E A = e 1 2 + e 2 2 = 100 \implies |\overline {EA}|=\sqrt {e_1^2+e_2^2}=\boxed {100} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...