Geo-math-trick (Geometry)!

Geometry Level 5

If A B C \triangle ABC and A D C \triangle ADC are Right angled triangle with D C A = B A C = 9 0 \angle DCA=\angle BAC=90^{\circ} with A C AC being the smallest side for each triangle and both the circles have equal diameter of 68 68 cm. And each side of both the triangles is an integer.

Then find the minimum area of the blue region in cm 2 \text{cm}^{2} . Correct your answer to three decimal places before entering it.


The answer is 172.781.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let O be the center of circle ADC and M midpoint of AC. Since 68 is the hypotenuse of right triangle with integer sides we have Pythagorean triple. 68=4*17. So the triple is 4*(8-15-17). ..AC=32, DC=60, DA=68, radius=34. The angle common chord AC substance at the center = 2* angle ADC=2*ArcTanAC/DC=2*ArcTan32/60 So the area of sector A O C = A r c T a n ( 32 60 ) 3 4 2 . A r e a o f Δ A O C = 1 2 A C O M = 1 2 32 60 2 . S h a d e d a r e a = 2 ( A r c T a n ( 32 60 ) 3 4 2 1 2 32 60 2 ) = 172.781 \text{Let O be the center of circle ADC and M midpoint of AC.}\\ \text{Since 68 is the hypotenuse of right triangle with integer sides we have Pythagorean triple.}\\ \text{ 68=4*17. So the triple is 4*(8-15-17). ..AC=32, DC=60, DA=68, radius=34.}\\ \text{The angle common chord AC substance at the center}\\ \text{= 2* angle ADC=2*ArcTan{AC/DC}=2*ArcTan{32/60}}\\ \text{So the area of sector }AOC =ArcTan(\frac {32}{60})*34^2.\\ Area\ of\ \Delta\ AOC=\frac 1 2 *AC*OM=\frac 1 2 *32*\frac {60} 2.\\ \therefore\ Shaded\ area\ =2*\left (ArcTan(\frac {32}{60})*34^2 - \frac 1 2 *32*\frac {60} 2 \right )=\Large \color{#D61F06}{172.781}

Nice one.I think it would have been better if you had mentioned why AC=32 & not DC.(To minimize the area.)

rajdeep brahma - 4 years, 2 months ago

What is arctan ?

Mr. India - 2 years, 6 months ago

Wrong solution please make it correct

Aman Vishwakarma - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...