Square Inscribed Triangle

Geometry Level 4

The area of Square D E F G \Box DEFG is a b c a\sqrt{b}-c , which is inscribed into an equilateral A B C \triangle ABC .

With a , b , c a,b,c are all integers and b b square free. And The area of the equilateral triangle A B C \triangle ABC is 1 1 .

Evaluate c a b \dfrac{c-a}{b} to three decimal places.


The answer is 6.667.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Mar 11, 2015

Let the side length of the triangle A B = B C = C A = x AB=BC=CA = x and and that of the square D E = E F = F G = G D = h DE=EF=FG=GD=h .

We can see that A G = G D = h AG=GD=h and that:

G C sin 6 0 = G F ( C A A G ) sin 6 0 = G F ( x h ) sin 6 0 = h x sin 6 0 = ( 1 + sin 6 0 ) h \begin{aligned} GC \sin{60^\circ} & = GF\\ (CA-AG)\sin{60^\circ} & = GF \\ (x-h)\sin{60^\circ} & = h \\ x\sin{60^\circ} & = \left( 1 +\sin{60^\circ} \right) h \end{aligned}

We note that the area of A B C \triangle ABC is 1 2 x 2 sin 6 0 = 1 x 2 sin 6 0 = 2 \frac {1}{2}x^2\sin{60^\circ} = 1 \quad \Rightarrow x^2\sin{60^\circ} = 2 .

x sin 6 0 = ( 1 + sin 6 0 ) h x 2 sin 2 6 0 = ( 1 + sin 6 0 ) 2 h 2 2 sin 6 0 = ( 1 + 2 sin 6 0 + sin 2 6 0 ) h 2 3 = ( 1 + 3 + 3 4 ) h 2 4 3 = ( 7 + 4 3 ) h 2 \begin{aligned} x\sin{60^\circ} & = \left( 1 +\sin{60^\circ} \right) h \\ x^2\sin^2{60^\circ} & = \left( 1 +\sin{60^\circ} \right)^2 h^2 \\ 2\sin{60^\circ} & = \left( 1 +2\sin{60^\circ} + \sin^2 {60^\circ} \right)h^2 \\ \sqrt{3} & = \left( 1 +\sqrt{3} + \dfrac {3}{4} \right)h^2 \\ 4 \sqrt{3} & = \left( 7 +4\sqrt{3} \right)h^2 \end{aligned}

We note that the area of the square is:

A = h 2 = 4 3 7 + 4 3 = ( 4 3 ) ( 7 4 3 ) 1 = 28 3 48 A=h^2 = \dfrac {4 \sqrt{3}}{7 +4\sqrt{3}} = \dfrac {(4 \sqrt{3})(7 - 4\sqrt{3})} {1} = 28\sqrt{3} - 48

c a b = 48 28 3 = 20 3 = 6.667 \Rightarrow \dfrac{c-a}{b} = \dfrac {48-28}{3} = \dfrac {20}{3} = \boxed{6.667}

Hung Woei Neoh
May 18, 2016

First, we find the length of the side of the \triangle . Since A B = A C = B C AB = AC = BC :

1 2 ( B C ) 2 sin 6 0 = 1 ( B C ) 2 ( 3 2 ) = 2 ( B C ) 2 = 4 3 1 2 B C = 2 3 1 4 \dfrac{1}{2}(BC)^2\sin60^{\circ} = 1\\ (BC)^2\left(\dfrac{\sqrt{3}}{2}\right) = 2\\ (BC)^2 = \dfrac{4}{3^{\frac{1}{2}}}\\ BC = \dfrac{2}{3^{\frac{1}{4}}}

Now, we let the side of the square be q q , as shown in the diagram below:

We can find B E = F C BE=FC in terms of q q :

tan 6 0 = D E B E 3 = q B E B E = q 3 \tan60^{\circ} = \dfrac{DE}{BE}\\ \sqrt{3} = \dfrac{q}{BE}\\ BE = \dfrac{q}{\sqrt{3}}

We know that:

B C = B E + E F + F C 2 3 1 4 = q + 2 q 3 2 q + 3 q 3 = 2 3 1 4 q = 2 3 3 1 4 ( 2 + 3 ) q = 2 ( 3 1 4 ) 2 + 3 BC = BE + EF + FC\\ \dfrac{2}{3^{\frac{1}{4}}} = q + 2\dfrac{q}{\sqrt{3}}\\ \dfrac{2q+\sqrt{3}q}{\sqrt{3}} = \dfrac{2}{3^{\frac{1}{4}}}\\ q=\dfrac{2\sqrt{3}}{3^{\frac{1}{4}}\left(2+\sqrt{3}\right)}\\ q=\dfrac{2(3^{\frac{1}{4}})}{2 + \sqrt{3}}

The area of the square is given as q 2 q^2 :

q 2 = ( 2 ( 3 1 4 ) 2 + 3 ) 2 = 4 3 4 + 4 3 + 3 = 4 3 7 + 4 3 = 4 3 ( 7 4 3 ) ( 7 + 4 3 ) ( 7 4 3 ) = 28 3 16 ( 3 ) 49 16 ( 3 ) = 28 3 48 49 48 = 28 3 48 q^2 = \left(\dfrac{2(3^{\frac{1}{4}})}{2 + \sqrt{3}}\right)^2\\ =\dfrac{4\sqrt{3}}{4+4\sqrt{3}+3}\\ =\dfrac{4\sqrt{3}}{7+4\sqrt{3}}\\ =\dfrac{4\sqrt{3}(7-4\sqrt{3})}{(7+4\sqrt{3})(7-4\sqrt{3})}\\ =\dfrac{28\sqrt{3} - 16(3)}{49-16(3)}\\ =\dfrac{28\sqrt{3}-48}{49-48}\\ =28\sqrt{3}-48

a b c = 28 3 48 a = 28 , b = 3 , c = 48 c a b = 48 28 3 = 20 3 = 6.667 a\sqrt{b} - c=28\sqrt{3}-48\\ a=28,\;b=3,\;c=48\\ \dfrac{c-a}{b} = \dfrac{48-28}{3} = \dfrac{20}{3} = \boxed{6.667}

Collection of shapes and spaces equate total the One

Aaaaaa Bbbbbb
Mar 10, 2015

Call A, B are edges of square and equilateral triangles. [ A B C ] = B 2 3 4 = 1 B 2 = 4 3 [ABC]=\frac{B^2\sqrt{3}}{4}=1 \Rightarrow B^2=\frac{4}{\sqrt{3}} A 2 3 + A = B A\frac{2}{\sqrt{3}}+A=B A = 3 B 3 + 2 A=\frac{\sqrt{3}B}{\sqrt{3}+2} A 2 = 3 B 2 7 + 4 3 = 28 3 48 A^2=\frac{3B^2}{7+4\sqrt{3}}=28\sqrt{3}-48 c a b = 20 3 = 6.667 \frac{c-a}{b}=\frac{20}{3}=\boxed{6.667}

cant understand.... make it easy

Payel Saha - 6 years, 3 months ago

Log in to reply

Angle B is 60 and Angle DGB is 90. So we can use trigonometry to find BG In terms of side of the square. What we get will be equal to CF as EFC and DGB are congruent. BG+GF+CF = side of triangle ABC(which we can find from the area). So we will get side of the square and hence we can find the area,

Kushagra Sahni - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...