Geometric Application of Trigonometry 1

Geometry Level 3

In A B C \triangle ABC , C = 9 0 \angle C=90^{\circ } , M M is the midpoint of B C BC and sin B A M = 1 3 \sin \angle BAM=\dfrac 13 . What is sin B A C \sin \angle BAC ?

1 1 6 3 \frac {\sqrt 6}3 3 3 \frac {\sqrt 3}3 5 3 \frac {\sqrt 5}3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 25, 2019

Let B A M = α \angle BAM = \alpha ; then sin α = 1 3 \sin \alpha = \frac 13 . Let B A C = θ \angle BAC = \theta and we need to find sin θ \sin \theta . Let A C = b AC =b . From the figure above, we have { tan θ = 2 b tan ( θ α ) = 1 b \begin{cases} \tan \theta = \dfrac 2b \\ \tan (\theta - \alpha) = \dfrac 1b \end{cases}

tan θ = 2 tan ( θ α ) = 2 ( tan θ tan α ) 1 + tan θ tan α As sin α = 1 3 tan = 1 2 2 = 2 ( tan θ 1 2 2 ) 1 + 1 2 2 tan θ = 4 2 tan θ 2 2 2 + tan θ \begin{aligned} \implies \tan \theta & = 2 \tan (\theta - \alpha) \\ & = \frac {2(\tan \theta - \tan \alpha)}{1+\tan \theta \tan \alpha} & \small \color{#3D99F6} \text{As }\sin \alpha = \frac 13 \implies \tan = \frac 1{2\sqrt 2} \\ & = \frac {2\left(\tan \theta - \frac 1{2\sqrt 2} \right)}{1+ \frac 1{2\sqrt 2}\tan \theta} \\ & = \frac {4\sqrt 2 \tan \theta - 2}{2\sqrt 2+ \tan \theta} \end{aligned}

tan 2 θ 2 2 tan θ + 2 = 0 ( tan θ 2 ) 2 = 0 tan θ = 2 sin θ = 2 3 = 6 3 \begin{aligned} \implies \tan^2 \theta - 2\sqrt 2 \tan \theta + 2 & = 0 \\ (\tan \theta - \sqrt 2)^2 & = 0 \\ \tan \theta & = \sqrt 2 \\ \implies \sin \theta & = \frac {\sqrt 2}{\sqrt 3} = \boxed{\frac {\sqrt 6}3} \end{aligned}

David Vreken
Aug 25, 2019

Let a = B C a = BC (so that 1 2 a = C M = B M \frac{1}{2}a = CM = BM ), b = A C b = AC , c = A B c = AB , and m = A M m = AM .

The area of B A M \triangle BAM can be expressed as A B A M = 1 2 m c sin ( B A M ) = 1 6 m c A_{\triangle BAM} = \frac{1}{2}mc \sin (\angle BAM) = \frac{1}{6}mc and A B A M = 1 2 1 2 a b = 1 4 a b A_{\triangle BAM} = \frac{1}{2} \cdot \frac{1}{2}a \cdot b = \frac{1}{4}ab . Equating the two area equations and simplifying gives 2 m c = 3 a b 2mc = 3ab .

By Pythagorean's Theorem on A C M \triangle ACM and on A B C \triangle ABC we have m = 1 4 a 2 + b 2 m = \sqrt{\frac{1}{4}a^2 + b^2} and b = c 2 a 2 b = \sqrt{c^2 - a^2} . Substituting these into 2 m c = 3 a b 2mc = 3ab gives 2 c 1 4 a 2 + ( c 2 a 2 ) = 3 a c 2 a 2 2c \sqrt{\frac{1}{4}a^2 + (c^2 - a^2)} = 3a\sqrt{c^2 - a^2} , which solves to a = 6 3 c a = \frac{\sqrt{6}}{3}c .

Therefore, sin B A C = a c = 6 3 \sin \angle BAC = \frac{a}{c} = \boxed{\frac{\sqrt{6}}{3}} .

But according to the question angle C is 90°not angle B

Samar Yadav - 1 year, 1 month ago

Log in to reply

Thanks! I edited my solution.

David Vreken - 1 year, 1 month ago

Log in to reply

Welcome Sir

Samar Yadav - 1 year, 1 month ago
Kevin Xu
Aug 24, 2019

Let B A M = β \angle BAM = β B A c = α \angle BAc= α \\ Thus C M = A M sin ( α β ) CM = AM \sin(α - β) \\ \\

\because M M is the mid-point of B C BC \\ \therefore B M = A M sin ( α β ) BM = AM \sin(α - β) \\ \\

Using Sine Law on A M B \triangle AMB and get A M sin B = B M sin ( β ) \frac {AM}{\sin B}=\frac {BM}{ \sin(β)} \\ Which is A M sin ( π \2 α ) = A M sin ( α β ) sin ( β ) \frac {AM}{\sin (\pi\2 - α)}=\frac {AM \sin(α - β)}{ \sin(β)} \\ \\

\because sin ( β ) \sin(β) = 1 3 \frac{1}{3} \\ \therefore cos ( β ) \cos(β) = 2 2 3 \frac{2 \sqrt {2}}{3} \\ \therefore 1 3 = cos ( α ) ( 2 2 3 sin ( α ) 1 3 cos ( α ) \frac{1}{3} = \cos (α) (\frac{2 \sqrt {2}}{3} \sin (α) - \frac{1}{3} \cos (α) = 2 3 2 sin ( α ) cos ( α ) 1 3 cos 2 ( α ) \frac{2}{3} \sqrt {2} \sin (α) \cos (α) - \frac{1}{3} \cos ^{2} (α) \\ 1 = 2 2 sin ( α ) cos ( α ) cos 2 ( α ) 1 = 2\sqrt {2} \sin (α) \cos (α) - \cos ^{2} (α) (Divide cos 2 ( α ) \cos^{2} (α) on both sides) \\ \\ tan ( α ) = 2 \tan (α) = \sqrt 2 \\ sin ( α ) = 6 3 \sin (α) = \frac {\sqrt 6}{3} \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...