Geometric Maxima and Minimas

Geometry Level 5

In a A B C \triangle ABC , internal angle bisectors A I AI , B I BI and C I CI are produced to meet opposite sides in A A^{'} , B B^{'} and C C^{'} respectively, then the maximum value of

A I . B I . C I A A . B B . C C \large\ \frac { AI.BI.CI }{ A{ A }^{ ' }.B{ B }^{ ' }.C{ C }^{ ' } }


The answer is 0.296.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Atomsky Jahid
May 20, 2018

The incenter of a triangle divides the angle bisectors into a certain ratio.

Let, A B = c , B C = a , A C = b AB = c, BC = a, AC = b .

Then, A I I A = b + c a \frac{AI}{IA'}=\frac{b+c}{a} . [Proof is at the end.]

From which follows our desired ratio A I A A = b + c a + b + c \frac{AI}{AA'} = \frac{b+c}{a+b+c} .

Similarly, B I B B = c + a a + b + c \frac{BI}{BB'} = \frac{c+a}{a+b+c} and C I C C = a + b a + b + c \frac{CI}{CC'} = \frac{a+b}{a+b+c} .

So, ξ : = A I . B I . C I A A . B B . C C = b + c a + b + c × c + a a + b + c × a + b a + b + c \xi := \frac{AI.BI.CI}{AA'.BB'.CC'} = \frac{b+c}{a+b+c} \times \frac{c+a}{a+b+c} \times \frac{a+b}{a+b+c}

Now, applying AM-GM yields, b + c a + b + c + c + a a + b + c + a + b a + b + c 3 ξ 3 \frac{\frac{b+c}{a+b+c} + \frac{c+a}{a+b+c} + \frac{a+b}{a+b+c}}{3} \geq \sqrt[3]{\xi} or, 8 27 ξ \frac{8}{27} \geq \xi

Notice, the equality can be achieved when the triangle is equilateral; i.e., a = b = c a=b=c .


P.S.

Let, the inradius be r r . So, A I B = 1 2 c r \triangle AIB = \frac{1}{2} cr ; B I C = 1 2 a r \triangle BIC = \frac{1}{2} ar ; C I A = 1 2 b r \triangle CIA = \frac{1}{2} br .

Therefore, A B C = 1 2 ( a + b + c ) r \triangle ABC = \frac{1}{2} (a+b+c)r . And, A A I A = A B C B I C = a + b + c a \frac{AA'}{IA'} = \frac{\triangle ABC}{\triangle BIC} = \frac{a+b+c}{a} . Some algebraic manipulation will then lead you to A I I A = b + c a \frac{AI}{IA'}=\frac{b+c}{a} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...