Geometric mean of a sequence

Calculus Level 3

If G ( m ) G(m) denotes the Geometric Mean of the sequence m , m + 1 , m + 2 , . . . , 2 m m, m+1, m+2, ..., 2m

Find lim m G ( m ) m \large \lim_{m\to\infty} \frac{G(m)}{m}


The answer is 1.47151776469.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jeremy Galvagni
Apr 18, 2018

G ( m ) = ( ( 2 m ) ! m ! ) 1 m G(m) = \left(\frac{(2m)!}{m!}\right)^{\frac{1}{m}}

now

n ! 2 π n n n e n n! \approx \frac{\sqrt{2\pi n}*n^{n}}{e^{n}}

thus we have the approximation G ( m ) ( 4 π m ( 2 m ) 2 m e m 2 π m m m e 2 m ) 1 m G(m) \approx \left(\frac{\sqrt{4\pi m}*(2m)^{2m}*e^{m}}{\sqrt{2\pi m}*m^{m}e^{2m}}\right)^{\frac{1}{m}}

simplifying we get

( 2 4 m m m e m ) 1 m \left(\frac{\sqrt{2}*4^{m}m^{m}}{e^{m}}\right)^{\frac{1}{m}}

4 m e 2 1 m \frac{4m}{e}*\sqrt{2}^{\frac{1}{m}}

thus

G ( m ) m 4 e 2 1 m \frac{G(m)}{m} \approx \frac{4}{e}*\sqrt{2}^{\frac{1}{m}}

and thus the limit is 4 e 1.47151776469 \frac{4}{e} \approx \boxed{1.47151776469}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...