Geometric Mean of "All" Numbers between 1 1 and 2 2

Calculus Level 3

Evaluate lim N ( a = 0 N ( 1 + a N ) ) 1 N + 1 \displaystyle\lim_{N\to\infty}\left(\displaystyle\prod_{a=0}^{N}(1+\frac{a}{N})\right)^{\frac{1}{N+1}} .

1.5 1.5 4 e \frac{4}{e} 2 3 1 3 3^{\frac{1}{3}} 2 \sqrt{2} 2 π + 2 2 e \frac{2\pi+\sqrt{2}}{2e} 1 e + 2 π \frac{e+2}{\pi}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nick Turtle
Oct 27, 2017

lim N ( a = 0 N ( 1 + a N ) ) 1 N + 1 \displaystyle\lim_{N\to\infty}{\left(\displaystyle\prod_{a=0}^{N}(1+\frac{a}{N})\right)}^{\frac{1}{N+1}} = exp ln lim N ( a = 0 N ( 1 + a N ) ) 1 N + 1 =\exp{\ln{\displaystyle\lim_{N\to\infty}{\left(\displaystyle\prod_{a=0}^{N}(1+\frac{a}{N})\right)}^{\frac{1}{N+1}}}} where exp x = e x \exp{x}=e^x = exp lim N ln ( a = 0 N ( 1 + a N ) ) 1 N + 1 =\exp{\displaystyle\lim_{N\to\infty}\ln{\left(\displaystyle\prod_{a=0}^{N}(1+\frac{a}{N})\right)}^{\frac{1}{N+1}}} = exp lim N 1 N + 1 ln ( a = 0 N ( 1 + a N ) ) =\exp{\displaystyle\lim_{N\to\infty}\frac{1}{N+1}\ln{\left(\displaystyle\prod_{a=0}^{N}(1+\frac{a}{N})\right)}}

Using the rules of logarithms, = exp lim N 1 N + 1 a = 0 N ln ( 1 + a N ) =\exp{\displaystyle\lim_{N\to\infty}\frac{1}{N+1}\displaystyle\sum_{a=0}^{N}\ln{(1+\frac{a}{N})}}

Switch to integral notation with x = a N x=\frac{a}{N} and d x = 1 N dx=\frac{1}{N} : = exp ( 0 1 ln ( 1 + x ) d x ) =\exp{\left(\displaystyle\int_{0}^{1}\ln{(1+x)}\ dx\right)} = e [ ( 1 + x ) ln ( 1 + x ) 1 x ] 0 1 =e^{[(1+x) \ln{(1+x)}-1-x]_{0}^{1}} = e 2 ln ( 2 ) 1 =e^{2\ln(2)-1} = 2 2 e =\frac{2^2}{e} = 4 e =\frac{4}{e}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...