Geometric progressions

Algebra Level 3

In a geometric progression of real numbers, the sums of the first two terms is 7, and the sum of the first six term is 91. Find the sum of the first four terms.


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pedro Saboya
Aug 27, 2020

Se "a" é o termo inicial e "q" a razao da progressão, temos que a+aq = 7

Logo, a(1+q) = 7

Por outro lado, a+aq+...+aq^5=91

Logo, a(q^6-1)/(q-1) = 91

Portanto, (q^6-1)/[(1+q)(q-1)] = 13 -> q^6 - 1 = 13(q^2-1) -> q = 1 ou q = -1 ou q^4+q^2+1 = 13 -> q^2 = 3 ou q^2 = -4

Testando, gera solução apenas q^2 = 3, de onde obtemos que a+aq+aq²+aq³ = a(q^4-1)/(q-1) = 7(q^4-1)/(q^2-1) = 7(q^2+1) = 7(3+1) = 28.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...