Geometric sequence and calculus (1)

Algebra Level 3

Let x + x 2 + x 3 + + x n 2 + x n 1 + x n = x ( x n 1 ) x 1 x+x^2+x^3+\cdots+x^{n-2}+x^{n-1}+x^{n}=\dfrac{x(x^n-1)}{x-1} . ( x 1 x\neq1 )

What is 1 + 2 x + 3 x 2 + + ( n 2 ) x n 3 + ( n 1 ) x n 2 + n x n 1 1+2x+3x^2+ \cdots + (n-2)x^{n-3}+(n-1)x^{n-2}+nx^{n-1} ?


A. n x n + 1 n x n x n + 1 x 2 2 x + 1 \quad \dfrac{nx^{n+1}-nx^n-x^n+1}{x^2-2x+1}

B. x n + 2 x n + 1 x 2 1 \quad \dfrac{x^{n+2}-x^{n+1} }{x^2-1}

C. ( n + 1 ) x n + 1 n 2 x n + x n + 1 x 2 2 x + 1 \quad \dfrac{(n+1)x^{n+1}-n^2x^n+x^n+1}{x^2-2x+1}

D. n x n + 1 n x n x n 1 x 2 3 x + 2 \quad \dfrac{nx^{n+1}-nx^n-x^n-1}{x^2-3x+2}

A C D All of them are incorrect B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
May 25, 2016

x + x 2 + x 3 + . . . + x n 2 + x n 1 + x n = x ( x n 1 ) x 1 x+x^2+x^3+...+x^{n-2}+x^{n-1}+x^{n}=\frac{x(x^n-1)}{x-1} = x n + 1 x x 1 \frac{x^{n+1} -x}{x-1}

Differentiate both sides w . r . t . x w.r.t. x

1 + 2 x + 3 x 2 + . . . + ( n 2 ) x n 3 + ( n 1 ) x n 2 + n x n 1 1+2x+3x^2+...+(n-2)x^{n-3}+(n-1)x^{n-2}+nx^{n-1} = ( x 1 ) ( ( n + 1 ) x n 1 ) ( x n + 1 x ) ( 1 ) ( x 1 ) 2 \frac{(x-1)((n+1)x^n-1)-(x^{n+1} -x)(1)}{(x-1)^{2}}

= n x n + 1 n x n x n + 1 x 2 2 x + 1 \frac{nx^{n+1}-nx^n-x^n+1}{x^2-2x+1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...