Geometric sequence of infinite

Geometry Level 1

1 6 , 1 6 2 , 1 6 3 , 1 6 4 , 1 6 5 , \large \frac{1}{6},\frac{1}{6^{2}}, \frac{1}{6^{3}}, \frac 1{6^4}, \frac 1{6^5}, \cdots

What the sum of the infinite sequence above?

1 36 \frac 1{36} 1 25 \frac 1{25} 1 5 \frac 15 1 6 \frac 16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 30, 2016

Relevant wiki: Geometric Progression Sum

S = 1 6 + 1 6 2 + 1 6 3 + 1 6 4 + 1 6 5 + . . . = n = 1 ( 1 6 ) n This is a sum of infinite GP. = 1 6 1 1 1 6 = 1 6 6 5 = 1 5 \begin{aligned} S & = \frac 16 + \frac 1{6^2} + \frac 1{6^3} + \frac 1{6^4} + \frac 1{6^5} + ... \\ & = \sum_{n=1}^\infty \left(\frac 16\right)^n & \small \color{#3D99F6}{\text{This is a sum of infinite GP.}} \\ & = \frac 16 \cdot \frac 1{1-\frac 16} = \frac 16 \cdot \frac 65 = \boxed{\dfrac 15} \end{aligned}


Another solution

S = 1 6 + 1 6 2 + 1 6 3 + 1 6 4 + 1 6 5 + . . . = 1 6 + 1 6 ( 1 6 + 1 6 2 + 1 6 3 + 1 6 4 + . . . ) = 1 6 + 1 6 S 5 6 S = 1 6 S = 1 5 \begin{aligned} S & = \frac 16 + \frac 1{6^2} + \frac 1{6^3} + \frac 1{6^4} + \frac 1{6^5} + ... \\ & = \frac 16 + \frac 16 \left( \frac 16 + \frac 1{6^2} + \frac 1{6^3} + \frac 1{6^4} + ... \right) \\ & = \frac 16 + \frac 16 S \\ \implies \frac 56 S & = \frac 16 \\ S & = \boxed{\dfrac 15} \end{aligned}

Note: In fact, we can find the general formula S = 1 1 r S_\infty = \dfrac 1{1-r} this way.

how to solve if the question was for 5/6

abhishek alva - 4 years, 9 months ago

Log in to reply

The general formula for sum of infinite GP is:

n = 1 r n = r 1 r n = 1 ( 3 6 ) n = 5 6 1 5 6 = 5 \begin{aligned} \sum_{n=\color{#D61F06}{1}}^\infty r^n & = \frac r{1-r} \\ \implies \sum_{n=1}^\infty \left(\frac 36 \right)^n & = \frac {\frac 56}{1-\frac 56} = \boxed{5} \end{aligned}

You should refer to the wiki: Geometric Progression Sum I have provided in the solution to learn more.

Chew-Seong Cheong - 4 years, 9 months ago
Lorenz Navales
Aug 30, 2016

1 6 , 1 6 2 , 1 6 3 , 1 6 4 , 1 6 5 , \large \frac{1}{6},\frac{1}{6^{2}}, \frac{1}{6^{3}}, \frac 1{6^4}, \frac 1{6^5}, \cdots

a 1 a_{1} = 1 6 \frac{1}{6}
r = 1 6 \frac{1}{6}
and the formula is S n S_{n} = a 1 a_{1} /1-r

S n S_{n} = 1 6 \frac{1}{6} /1- 1 6 \frac{1}{6}

S n S_{n} = 1 6 \frac{1}{6} / 5 6 \frac{5}{6}

S n S_{n} = 1 5 \frac{1}{5}

r = a 2 a 1 = 1 36 1 6 = 1 36 × 6 1 = 1 6 r=\dfrac{a_2}{a_1}=\dfrac{\dfrac{1}{36}}{\dfrac{1}{6}}=\dfrac{1}{36}\times \dfrac{6}{1}=\dfrac{1}{6}

s = a 1 1 r = 1 6 1 1 6 = 1 5 s=\dfrac{a_1}{1-r}=\dfrac{\dfrac{1}{6}}{1-\dfrac{1}{6}}=\boxed{\dfrac{1}{5}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...