Geometrically Perfect Triangle

Geometry Level 4

Also Try " For every n>=3 "


The answer is 33.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Nov 30, 2014

Using Cosine Rule, we have:

B C 2 = A B 2 + A C 2 2 ( A B ) ( A C ) cos θ \overline {BC}^2 = \overline {AB}^2 + \overline {AC}^2 - 2 (\overline {AB}) ( \overline {AC}) \cos {\theta}

sin 2 θ = 2 sin θ 2 sin θ cos θ sin θ = 2 2 cos θ \Rightarrow \sin^2 {\theta} = 2 \sin {\theta} - 2 \sin {\theta} \cos {\theta} \quad \Rightarrow \sin {\theta} = 2 - 2 \cos {\theta}

Squaring both sides, we have:

sin 2 θ = 4 8 cos θ + 4 cos 2 θ 1 cos 2 θ = 4 8 cos θ + 4 cos 2 θ \sin^2 {\theta} = 4 - 8 \cos {\theta} + 4 \cos^2 {\theta} \quad \Rightarrow 1 - \cos^2 {\theta} = 4 - 8 \cos {\theta} + 4 \cos^2 {\theta}

5 cos 2 θ 8 cos θ + 3 ( 5 cos θ 3 ) ( cos θ 1 ) = 0 \Rightarrow 5 \cos^2 {\theta} - 8 \cos {\theta} + 3 \quad \Rightarrow ( 5 \cos {\theta} - 3) ( \cos {\theta} -1) = 0

cos θ = 3 5 \Rightarrow \cos {\theta} = \frac {3}{5} , since θ 0 \theta \ne 0 and hence cos θ 1 \cos {\theta} \ne 1 .

Since cos θ = 3 5 sin θ = 4 5 \cos {\theta} = \frac {3}{5}\quad \Rightarrow \sin {\theta} = \frac {4}{5} , as cos θ \cos {\theta} and sin θ \sin {\theta} as 3, 4 and 5 are Pythagorean triplets.

The area of A B C \triangle ABC is given by:

A = 1 2 sin θ sin θ cos θ 2 = 1 2 × 4 5 × 4 5 × cos θ 1 2 A = \dfrac {1}{2} \sin {\theta} \sqrt{\sin {\theta}}\cos {\frac {\theta} {2}} = \dfrac {1} {2} \times \dfrac {4}{5} \times \sqrt{\frac {4}{5}} \times \sqrt{\frac {\cos {\theta}-1} {2}}

= 1 2 × 4 5 × 4 5 × 3 5 1 2 = 1 2 × 4 5 × 4 5 × 4 5 = 8 25 = m n \quad = \dfrac {1} {2} \times \dfrac {4}{5} \times \sqrt{\frac {4}{5}} \times \sqrt{\frac {\frac {3}{5}-1} {2}} = \dfrac {1} {2} \times \dfrac {4}{5} \times \sqrt{\frac {4}{5}} \times \sqrt{\frac {4} {5}} = \dfrac {8}{25} = \dfrac {m}{n}

m + n = 8 + 25 = 33 \Rightarrow m + n = 8 + 25 = \boxed {33}

Robur 131
Oct 6, 2014

In triangle ABC,

we have, BC=a= root (sin theta) AB=AC=b=c= sin (theta)

now we know that, cos(A)= (b^2+ c^2- a^2)/ 2bc as angle A= theta we have,

    cos (theta) = 2sin(theta) - sin(theta)^2 / 2 sin(theta)

==> 2 sin (theta) cos (theta) = 2sin(theta) - sin(theta)^2 ==> sin(theta)^2 = 2 sin (theta) { 1 - cos(theta) } ==> sin(theta)^2 = 2 sin (theta) 2 sin(theta/2)^2 from further calculation we get,

tan (theta) =4/3 so sin(theta) =4/5.

now the area of triange ABC= 1/2. b. c. sin(A) = 1/2 sin(theta)^2 = 1/2 . 16/25 = 8/25

so, m+n =8+25 =33

I would be really grateful if anyone edited by comment in LATEX :)

OK.
I n A B C , w e h a v e , B C = a = sin θ A B = A C = b = c = sin θ . n o w w e k n o w t h a t , cos A = b 2 + c 2 a 2 2 b c a s A = θ . cos θ = 2 sin θ sin θ 2 2 sin θ . 2 sin θ cos θ = 2 sin θ ( sin θ ) 2 ( sin θ ) 2 = 2 ( sin θ ) ( 1 cos θ ) ( sin θ ) 2 = 2 ( sin θ ) 2 sin θ 2 ) 2 f r o m f u r t h e r c a l c u l a t i o n w e g e t , tan θ = 4 3 s o sin θ = 4 5 . n o w t h e a r e a o f A B C = 1 2 b c sin A = 1 2 ( sin θ ) 2 = 1 2 16 25 = 8 25 s o , m + n = 8 + 25 = 33. In~\triangle~ ABC,\\ ~~~~~\\ we~ have,~ BC=a= \sqrt{\sin \theta}~~ AB=AC=b=c= \sin \theta.\\ ~~~~~\\ now~ we~ know~ that,~ \cos A=\dfrac{b^2+ c^2- a^2}{ 2bc}~ as~ \angle A= \theta.\\ ~~~~~\\ \cos \theta = 2\sin \theta - \dfrac{\sin\theta^2}{ 2 \sin\theta.}\\ ~~~~~\\ \implies~ 2 \sin\theta*\cos \theta = 2\sin\theta - (\sin\theta)^2 \implies~ (\sin \theta)^2 = 2 (\sin \theta) ( 1 - \cos \theta) \implies~ (\sin \theta)^2\\ ~~~~~\\ = 2(\sin \theta)* 2 \sin \dfrac{\theta}2)^2~ from ~further~ calculation~ we~ get,\\ ~~~~~\\ \tan \theta =\dfrac 4 3~ so~ \sin \theta =\dfrac 4 5.\\ ~~~~\\ now~ the~ area~ of~ \triangle~ ABC= \dfrac 1 2* b*c* \sin A = \dfrac 1 2( \sin \theta)^2 = \dfrac 1 2*\dfrac {16}{25} =\dfrac 8{25}\\ ~~~~\\ so,~ m+n =8+25 =\color{#D61F06}{33}.

I have rendered your solution in Latex. But I see many mistakes in it. To start with values of a and b=c are interchanged.
cos θ = 2 sin θ sin θ 2 2 sin θ . \cos \theta = 2\sin \theta - \dfrac{\sin\theta^2}{ 2 \sin\theta.} .
In fact I tried to understand your steps but failed. Sorry.

Niranjan Khanderia - 3 years, 2 months ago
Sugam Bhandari
Jan 13, 2015

Why use trig when u can use algebra : ) Btw, that number that u can barely read just above the answer is (4/5).

First, we have that B = C = π 2 θ 2 \angle B = \angle C = \frac{\pi}{2} - \frac{\theta}{2} .

Next, using the Sine Law, we have that

sin ( B ) sin ( θ ) = sin ( θ ) sin ( θ ) sin ( B ) = sin ( θ ) cos ( θ 2 ) = sin ( θ ) \frac{\sin(\angle B)}{\sqrt{\sin(\theta)}} = \frac{\sin(\theta)}{\sin(\theta)} \Longrightarrow \sin(\angle B) = \sqrt{\sin(\theta)} \Longrightarrow \cos(\frac{\theta}{2}) = \sqrt{\sin(\theta)} .

Now square both sides and use the identity cos ( θ ) = 2 cos 2 ( θ 2 ) 1 \cos(\theta) = 2\cos^{2}(\frac{\theta}{2}) - 1 to find that

cos ( θ ) + 1 = 2 sin ( θ ) \cos(\theta) + 1 = 2\sin(\theta) .

Square both sides again and use the identity sin 2 ( θ ) + cos 2 ( θ ) = 1 \sin^{2}(\theta) + \cos^{2}(\theta) = 1 to find that

5 cos 2 ( θ ) + 2 cos ( θ ) 3 = 0 ( 5 cos ( θ ) 3 ) ( cos ( θ ) + 1 ) = 0 5\cos^{2}(\theta) + 2\cos(\theta) - 3 = 0 \Longrightarrow (5\cos(\theta) - 3)(\cos(\theta) + 1) = 0 .

The only valid solution in this case is thus cos ( θ ) = 3 5 \cos(\theta) = \frac{3}{5} , which in turn gives us that sin ( θ ) = 4 5 \sin(\theta) = \frac{4}{5} .

Δ A B C \Delta ABC thus has side lengths 4 5 , 2 5 5 , 2 5 5 \frac{4}{5}, \frac{2\sqrt{5}}{5}, \frac{2\sqrt{5}}{5} . A quick application of Heron's formula yields an area value of 8 25 \frac{8}{25} .

Thus m = 8 , n = 25 m = 8, n = 25 and m + n = 33 m + n = \boxed{33} .

use of the formula

Area of triangle= 1 2 a b sin θ \frac { 1 }{ 2 } ab\sin { \theta }

can be a better option here because we have sin θ \sin { \theta } where a,b are side lengths and θ \theta is angle contained by them. Rest did the same.nice solution

Gautam Sharma - 6 years, 6 months ago

it can also be solved by using sub-multiple angles.since the area is coming ((\sin\theta)^2)/2 & by solving the half of the base with respect to hypotenuse of triangle ABD where D is the mid point of side BC and AD is the altitude of triangle ABC we get \tan(theta)/2 = 1/2. since we know \sin\2*theta = (2\tan\theta)/(1+ (\tan\theta)^2).

nibedan mukherjee - 6 years, 8 months ago

S i n A = 2 S i n A / 2 C o s A / 2. 1 2 S i n θ = 1 2 B C = A B S i n θ 2 . 1 2 S i n θ = S i n θ S i n θ 2 . 1 2 = S i n θ 2 S i n θ = S i n θ 2 2 C o s θ 2 . T a n θ 2 = 1 2 S i n θ 2 = 1 5 , C o s θ 2 = 2 5 , S i n θ = 2 1 5 2 5 = 4 5 . A r e a o f t h e i s o s c e l e s Δ A B C = A B S i n θ 2 A B C o s θ 2 . = S i n θ 1 2 S i n θ = 1 2 ( 4 5 ) 2 = 8 25 = m n . m + n = 8 + 25 = 33. Sin A=2*Sin A/2*Cos A/2.\\ ~~~~\\ \frac12 Sin \theta=\frac12 BC=AB*Sin \dfrac {\theta} 2.~\qquad~~~\qquad~~~\qquad~~~~\implies~\frac12 Sin \theta=\sqrt{Sin \theta}*Sin \dfrac {\theta} 2.\\ ~~~~\\ \therefore~\dfrac 1 2=\dfrac{Sin \dfrac{\theta}2}{\sqrt{Sin \theta}}=\sqrt{\dfrac{ Sin \dfrac {\theta} 2} {2*Cos \dfrac {\theta} 2. } } ~~~\qquad~~~\qquad~~~\qquad~~~\therefore~Tan \dfrac {\theta} 2=\dfrac12 \\ ~~~~\\ \implies~Sin \dfrac {\theta} 2=\dfrac 1 {\sqrt5},~~~Cos \dfrac {\theta} 2=\dfrac 2 {\sqrt5}, \qquad~~~\qquad~~~\qquad~~\therefore~Sin \theta=2*\dfrac 1 {\sqrt5}*\dfrac 2 {\sqrt5}*=\dfrac 4 5.\\ ~~~~\\ Area~of~the~isosceles ~\Delta~ ABC ~=AB*Sin \dfrac {\theta} 2*AB*Cos \dfrac {\theta} 2. =Sin {\theta}*\frac 1 2*Sin{\theta}\\ ~~~~\\ =\frac 1 2* \Big(\dfrac 4 5 \Big)^2=\dfrac8 {25}=\dfrac m n. ~~\qquad~~~\qquad~~~\qquad~~~~~m+n=8+25=\color{#D61F06}{33}.

I lost, because of... 8+25~=~31 ???

Niranjan Khanderia - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...