Geometricus geometriorum (HP II, secret "semi-tyre")

Geometry Level 5

A semicircumference of radius π \pi is divided into n + 1 n + 1 equal parts and is joined any point of the division with the ends of the semicircumference, forming a right-triangle with area A k A_{k} .

Find the limit as n tends to infinity of the arithmetic mean of the areas of these triangles.


inspiration

Bonus: Generalise when the radius is r r


The answer is 6.2832.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Suppose the semicircle has radius r and center (0,0), then the points that determine the divisions are: P k = ( r cos ( k π n + 1 ) , r sin ( k π n + 1 ) ) , for k= 1,... ,n P_k = (r \cos \left(\frac{k\pi}{n +1} \right), r \sin \left(\frac{k\pi}{n + 1} \right)), \space \text { for k= 1,... ,n} And the arithmetic mean of the areas are: M n = 1 n k = 1 n r 2 sin ( k π n + 1 ) M_n = \frac{1}{n} \displaystyle \sum_{ k = 1}^n r^2 \sin \left( \frac{k\pi}{n + 1} \right) . So, lim n M n = r 2 π lim n n + 1 n ( k = 1 n π n + 1 sin ( k π n + 1 ) ) = \displaystyle \lim_{n \to \infty} M_n = \frac{r^2}{\pi} \lim_{n \to \infty} \frac{n + 1}{n} (\sum_{k = 1}^{n} \frac{\pi}{n + 1} \sin \left(\frac{k\pi}{n + 1} \right)) = = r 2 π 0 π sin ( x ) d x = r 2 π ( cos ( x ) ) 0 π = 2 r 2 π = \frac{r^2}{\pi} \displaystyle \int_0^{\pi} \sin (x) dx = \frac{r^2}{\pi} \left( - \cos(x) \right)_0^{\pi} = \frac{2r^2}{\pi} Now, substituing r = π r = \pi the limit of arithmetic mean of the areas is 2 π 6.2831... 2\pi \approx 6.2831...

Detail: lim n n + 1 n ( k = 1 n π n + 1 sin ( k π n + 1 ) ) = lim n n + 1 n lim n ( k = 1 n π n + 1 sin ( k π n + 1 ) ) = \displaystyle \lim_{n \to \infty} \frac{n + 1}{n} (\sum_{k = 1}^{n} \frac{\pi}{n + 1} \sin \left(\frac{k\pi}{n + 1} \right)) = \lim_{n \to \infty} \frac{n + 1}{n} \cdot \lim_{n \to \infty} (\sum_{k = 1}^{n} \frac{\pi}{n + 1} \sin \left(\frac{k\pi}{n + 1} \right)) = = 1 lim n ( k = 1 n π n + 1 sin ( k π n + 1 ) ) = 0 π sin ( x ) d x = 1 \cdot \lim_{n \to \infty} (\sum_{k = 1}^{n} \frac{\pi}{n + 1} \sin \left(\frac{k\pi}{n + 1} \right)) = \int_0^{\pi} \sin (x) dx

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...