Geome(trig)tric progression

Geometry Level 5

n = 1 2016 1 2 n 1 tan θ 2 n 1 \displaystyle \sum^{2016}_{n=1}\dfrac{1}{2^{n-1}}\tan \dfrac{\theta}{2^{n-1}}

If the value of the above sum is in the form 1 2 k cot θ 2 k 2 cot m θ \frac{1}{2^{k}}\cot \frac{\theta}{2^{k}}-2\cot m\theta , where k k , m N m \in \mathbb{N} , then find k + m k+m .


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Applying logarithm and differentiating the identity r = 1 n cos θ 2 r = sin θ 2 n sin θ 2 n \displaystyle \prod_{r=1}^{n}\cos \frac{\theta}{2^r} = \frac{\sin \theta}{2^n\sin \frac{\theta}{2^n}} we get , r = 1 n 1 2 r tan θ 2 r = 1 2 n cot θ 2 n cot θ \displaystyle \sum_{r=1}^{n} \frac{1}{2^r}\tan \frac{\theta}{2^r} = \frac{1}{2^n}\cot \frac{\theta}{2^n}-\cot \theta

So, n = 1 2016 1 2 n 1 tan θ 2 n 1 = 1 2 2015 tan θ 2 2015 cot θ + tan θ = 1 2 2015 tan θ 2 2015 2 cot 2 θ \displaystyle \sum_{n=1}^{2016} \frac{1}{2^{n-1}} \tan \frac{\theta}{2^{n-1}} = \frac{1}{2^{2015}}\tan \frac{\theta}{2^{2015}} -\cot\theta+\tan\theta = \frac{1}{2^{2015}}\tan \frac{\theta}{2^{2015}} - 2\cot 2\theta which makes answer 2 + 2015 = 2017 \boxed{2+2015=2017}

That use of differentiation is great

Prince Loomba - 4 years, 9 months ago

I thought differentiation could only be done to compute infinite sums or products. This approach is great.

Akshay Yadav - 4 years, 8 months ago
Mark Hennings
Sep 12, 2016

Since cot θ 2 cot 2 θ = tan θ \cot\theta - 2\cot2\theta \; = \; \tan\theta this series telescopes, with S = n = 1 2016 [ 1 2 n 1 cot ( θ 2 n 1 ) 1 2 n 2 cot ( θ 2 n 2 ) ] = 1 2 2015 cot ( θ 2 2015 ) 2 cot 2 θ S \; = \; \sum_{n=1}^{2016}\left[\frac{1}{2^{n-1}}\cot\left(\frac{\theta}{2^{n-1}}\right) - \frac{1}{2^{n-2}}\cot\left(\frac{\theta}{2^{n-2}}\right) \right] \; =\;\frac{1}{2^{2015}}\cot\left(\frac{\theta}{2^{2015}}\right) - 2\cot2\theta making the answer 2015 + 2 = 2017 2015 + 2 = \boxed{2017} .

Aakash Khandelwal
Sep 12, 2016

Let the sum be S S

Then ( 1 / 2 2016 ) ( c o t ( θ / 2 2016 ) S = 2 c o t ( 2 θ ) (1/2^{2016} )(cot(\theta/2^{2016}) -S= 2cot(2\theta) ,

By a property that t a n ( θ ) + c o t ( θ ) = 2 c o t ( 2 θ ) -tan(\theta)+ cot(\theta)=2cot(2\theta)

This property gets applyied succesively as soon as last term of S -S is paired with ( 1 / 2 2016 ) ( c o t ( θ / 2 2016 ) (1/2^{2016} )(cot(\theta/2^{2016}) . Thus answer follows.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...