Geometry ... (1)

Geometry Level 3

Let A B C D ABCD be a convex quadrilateral with A B = a , B C = b , C D = c and D A = d AB = a, ~BC = b, ~CD = c ~\text{and}~ DA = d . Suppose a 2 + b 2 + c 2 + d 2 = a b + b c + c d + d a a^2 + b^2 + c^2 + d^2 = ab + bc + cd + da and the area of A B C D ABCD is 60 square units 60 ~~\text{square units} . If the length of o n e one of the diagonals is 30 units 30 ~~\text{units} . What is the length of the o t h e r other diagonal.

6 units 4 units 5 units 7 units

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S P
May 28, 2018

a 2 + b 2 + c 2 + d 2 = a b + b c + c d + d a a 2 + b 2 + c 2 + d 2 a b b c c d d a = 0 multiply both sides with ’2’ 2 a 2 + 2 b 2 + 2 c 2 + 2 d 2 2 a b 2 b c 2 c d 2 d a = 0 ( a b ) 2 + ( b c ) 2 + ( c d ) 2 + ( d a ) 2 = 0 \begin{aligned}& a^2+b^2+c^2+d^2=ab+bc+cd+da \\& \implies a^2+b^2+c^2+d^2-ab-bc-cd-da=0\\& \\&\color{#3D99F6}{\text{multiply both sides with '2'}}\\& \\&\implies 2a^2+2b^2+2c^2+2d^2-2ab-2bc-2cd-2da=0\\& \implies (a-b)^2+(b-c)^2+(c-d)^2+(d-a)^2=0 \end{aligned}

a = b = c = d \therefore a=b=c=d . Hence, quadrilateral A B C D is a RHOMBUS \text{quadrilateral} ~ABCD ~\text{is a}~ \color{#D61F06}{\text{RHOMBUS}}

[ A B C D ] = p q 2 [ABCD]=\dfrac{pq}{2} where p p and q q are the diagonals of rhombus.

Since [ A B C D ] = 60 , p = 30 [ABCD]=60, ~p=30

60 = 30 2 q q = 4 \therefore \begin{aligned}&60=\dfrac{30}{2}q \\& \implies q=4\end{aligned}


NOTE: [ ] [\cdot] represent the area of the polygon

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...