But it's not a right triangle!

Geometry Level 2

Express the value of tan θ \tan\theta in terms if x x and y y .

y x \frac yx y x + y \frac y{x+y} x x + y \frac x{x+y} y 2 x + y \frac{y}{2x+y}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alan Guo
Nov 27, 2015

tan π / 2 + θ = tan π / 2 + tan θ 1 tan π / 2 tan θ \tan{\pi/2 + \theta} = \dfrac{\tan{\pi/2} +\tan{\theta}}{1-\tan{\pi/2}\tan{\theta}} x + y x = 1 + tan θ 1 tan θ \dfrac{x+y}{x}=\dfrac{1+\tan{\theta}}{1-\tan{\theta}} x + y ( x + y ) tan θ = x + x tan θ x+y -(x+y)\tan{\theta} = x + x\tan{\theta} y = ( 2 x + y ) tan θ y = (2x+y)\tan{\theta} tan θ = y 2 x + y \tan{\theta}=\dfrac{y}{2x+y}

i think you meant π 4 \dfrac{\pi}{4} , anyways same solution.

Aareyan Manzoor - 5 years, 6 months ago

By the Law of Sines:

y sin θ = x 2 sin ( 4 5 o θ ) \displaystyle{\frac{y}{\sin \theta}=\frac{x\sqrt{2}}{\sin (45^o-\theta)}}

sin ( 4 5 o θ ) = sin 4 5 o cos θ sin θ cos 4 5 o \displaystyle{\sin (45^o-\theta)= \sin 45^o \cos \theta - \sin \theta \cos 45^o}

sin θ = y ( sin 4 5 o cos θ sin θ cos 4 5 o ) x 2 \displaystyle{\sin \theta = \frac{y(\sin 45^o \cos \theta - \sin \theta \cos 45^o)}{x \sqrt{2}}}

sin θ = y ( 1 2 cos θ sin θ 1 2 ) x 2 \displaystyle{\sin \theta = \frac{y(\frac{1}{\sqrt{2}} \cos \theta - \sin \theta \frac{1}{\sqrt{2}})}{x \sqrt{2}}}

cos θ y 2 x sin θ y 2 x = sin θ \displaystyle{\frac{\cos \theta y}{2x}-\frac{\sin \theta y}{2x} = \sin \theta}

Dividing the equation by cos θ \cos \theta :

y 2 x tan θ y 2 x = tan θ \displaystyle{\frac{y}{2x}-\tan \theta \frac{y}{2x} = \tan \theta}

y 2 x = tan θ + tan θ y 2 x \displaystyle{\frac{y}{2x} = \tan \theta+\tan \theta \frac{y}{2x}}

y 2 x = tan θ ( 1 + y 2 x ) \displaystyle{\frac{y}{2x} = \tan \theta (1+\frac{y}{2x})}

y 2 x 2 x 2 x + y = tan θ \displaystyle{\frac{y}{2x} \frac{2x}{2x+y}= \tan \theta}

tan θ = y 2 x + y \displaystyle{\tan \theta= \frac{y}{2x+y} }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...