Let A ( 0 , 2 ) , B ( 2 , 0 ) . point C be on the curve y = x 2 . How many possible point C 's make △ A B C to have an area of 2?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
∣ A B ∣ = 2 2 l A B : y = − x + 2 − − > x + y − 2 = 0 Let C be ( x o , y o ) d = 2 ∣ x o + y o − 2 ∣ 2 2 2 ⋅ 2 ∣ x o + y o − 2 ∣ = ∣ x o + y o − 2 ∣ = 2 ∵ C is on the function y = x 2 ∴ y o = x o 2 ∣ x o + x o 2 − 2 ∣ = 2 when x o + x o 2 − 2 = 2 x o 2 + x o − 4 = 0 Δ = b 2 − 4 a c = 1 + 1 6 > 0 2 s o l u t i o n s when x o + x o 2 − 2 = − 2 x o 2 + x o = 0 x o ( x o + 1 ) = 0 2 s o l u t i o n s
Thus 4 solutions in total
Problem Loading...
Note Loading...
Set Loading...
Let A B be the base of △ A B C , point C be ( a , a 2 ) and C N be the altitude from C to A B . Then the equation of A B is y = 2 − x . . . ( 1 ) and the equation of C N is given by x − a y − a 2 = 1 ⟹ y = x − a + a 2 . . . ( 2 ) .
The coordinates of N ( x N , y N ) are given by ( 1 ) = ( 2 ) : 2 − x N = x N − a + a 2 ⟹ x N = 2 2 + a − a 2 and from ( 1 ) : y N = 2 2 − a + a 2 .
The height of △ A B C , C N = ( x N − a ) 2 + ( y N − a 2 ) 2 = ( 2 2 − a − a 2 ) 2 + ( 2 2 − a − a 2 ) 2 = 2 ∣ 2 − a − a 2 ∣ .
The area of △ A B C , [ A B C ] = 2 1 × A B × C N = 2 1 × 2 2 × 2 ∣ 2 − a − a 2 ∣ = ∣ 2 − a − a 2 ∣ .
For [ A B C ] = 2 ,
∣ 2 − a − a 2 ∣ = 2 ⟹ ⎩ ⎨ ⎧ For 2 − a − a 2 > 0 For 2 − a − a 2 < 0 ⟹ 2 − a − a 2 = 2 ⟹ a 2 + a − 2 = 2 ⟹ a = − 1 , 0 ⟹ a = 2 ± 1 7 − 1 2 solutions 2 solutions
Therefore, there are 4 possible point C 's.