Geometry -- 3

Geometry Level 3

Let A ( 0 , 2 ) , B ( 2 , 0 ) A (0, 2), B(2, 0) . point C C be on the curve y = x 2 y=x^2 . How many possible point C C 's make A B C \triangle ABC to have an area of 2?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 21, 2019

Let A B AB be the base of A B C \triangle ABC , point C C be ( a , a 2 ) (a,a^2) and C N CN be the altitude from C C to A B AB . Then the equation of A B AB is y = 2 x . . . ( 1 ) y = 2-x \ ...(1) and the equation of C N CN is given by y a 2 x a = 1 \dfrac {y-a^2}{x-a} = 1 y = x a + a 2 . . . ( 2 ) \implies y = x - a + a^2 \ ...(2) .

The coordinates of N ( x N , y N ) N(x_N, y_N) are given by ( 1 ) = ( 2 ) : 2 x N = x N a + a 2 (1) = (2): \ 2-x_N = x_N - a + a^2 x N = 2 + a a 2 2 \implies x_N = \dfrac {2+a-a^2}2 and from ( 1 ) : y N = 2 a + a 2 2 (1): \ y_N = \dfrac {2-a+a^2}2 .

The height of A B C \triangle ABC , C N = ( x N a ) 2 + ( y N a 2 ) 2 = ( 2 a a 2 2 ) 2 + ( 2 a a 2 2 ) 2 = 2 a a 2 2 CN = \sqrt{(x_N-a)^2+(y_N-a^2)^2} = \sqrt{\left(\dfrac {2-a-a^2}2\right)^2 + \left(\dfrac {2-a-a^2}2\right)^2} = \dfrac {|2-a-a^2|}{\sqrt 2} .

The area of A B C \triangle ABC , [ A B C ] = 1 2 × A B × C N = 1 2 × 2 2 × 2 a a 2 2 = 2 a a 2 [ABC] = \dfrac 12 \times AB \times CN = \dfrac 12 \times 2 \sqrt 2 \times \dfrac {|2-a-a^2|}{\sqrt 2} = |2-a-a^2| .

For [ A B C ] = 2 [ABC]=2 ,

2 a a 2 = 2 { For 2 a a 2 > 0 2 a a 2 = 2 a = 1 , 0 2 solutions For 2 a a 2 < 0 a 2 + a 2 = 2 a = ± 17 1 2 2 solutions |2-a-a^2| = 2 \implies \begin{cases} {\small \text{For }} 2-a-a^2 > 0 & \implies 2-a-a^2 = 2 & \implies a = -1, 0 & \small \text{2 solutions} \\ {\small \text{For }} 2-a-a^2 < 0 & \implies a^2+a-2 = 2 & \implies a = \dfrac {\pm \sqrt{17} -1}2 & \small \text{2 solutions} \end{cases}

Therefore, there are 4 \boxed 4 possible point C C 's.

Kevin Xu
Sep 9, 2019

A B = 2 2 |AB| = 2\sqrt 2 \\ l A B : y = x + 2 > x + y 2 = 0 l_{AB}: y=-x+2 --> x+y-2=0 \\ Let C C be ( x o , y o ) (x_o, y_o) \\ \\ d = x o + y o 2 2 d = \frac {|x_o+y_o-2|}{\sqrt 2 } \\ 2 2 2 x o + y o 2 2 = x o + y o 2 = 2 \frac {2\sqrt 2}{2} \cdot \frac {|x_o+y_o-2|}{\sqrt 2 } = |x_o+y_o-2|=2 \\ \because C C is on the function y = x 2 y=x^2 \\ y o = x o 2 \therefore y_o=x_o^2 \\ x o + x o 2 2 = 2 |x_o+x_o^2-2|=2 \\ when x o + x o 2 2 = 2 x_o+x_o^2-2=2 \\ x o 2 + x o 4 = 0 x_o^2+x_o-4=0 \\ Δ = b 2 4 a c = 1 + 16 > 0 \Delta = b^2-4ac = 1+16 > 0 2 s o l u t i o n s \boxed {2 \: solutions} \\ \\ when x o + x o 2 2 = 2 x_o+x_o^2-2=-2 \\ x o 2 + x o = 0 x_o^2+x_o=0 \\ x o ( x o + 1 ) = 0 x_o(x_o+1)=0 2 s o l u t i o n s \boxed {2 \: solutions} \\

Thus 4 4 solutions in total

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...