A geometry problem by vishwash kumar

Geometry Level 4

In a triangle A B C ABC , D D is a point on B C BC such that A D AD is the internal bisector of angle A A . Suppose B = 2 C \angle B = 2 \angle C and C D = A B CD = AB . Find A \angle A .


The answer is 72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Nov 5, 2016

Const : Angle bisector of B meeting AC at E \text{Angle bisector of }\angle B \text{ meeting AC at E}

Soln :

Let B A D = C A D = x , A B E = C B E = y Given B = 2 C C = B 2 = y B E = E C ( Sides opp to equal angles are equal ) In Δ A B C A + B + C = 180 2 x + 3 y = 180 1 Now, in Δ A B C and Δ A E B A C B = B E A = y B A E = B A C = 2 x ( common ) Δ A B C Δ A E B ( AA ) by cpst, A B A E = B C E B = A C A B B C E B = A C A B B C A C = E B A B B C A C = E C C D ( AB = CD, given. EC = BE, proved ) In Δ C D A and Δ C E B B C A C = E C C D C = C ( common ) Δ C D A Δ C E B C A D = C B E x = y 2 x + 3 y = 180 5 y = 180 and 5 x = 180 y = x = 36 B A C = 2 x = 2 × 36 = 72 \circle \text{Let } \angle BAD = \angle CAD = x, \angle ABE = \angle CBE = y \\ \text{Given } \angle B = 2 \angle C \\ \implies \angle C = \dfrac{\angle B}{2} = y \\ \implies BE = EC ~ (\text{Sides opp to equal angles are equal}) \\ \text{In } \Delta ABC \\ \angle A + \angle B + \angle C = 180 \\ \boxed{2x + 3y = 180 ~ \rightarrow ~ 1} \\ \text{Now, in } \Delta ABC \text{ and } \Delta AEB \\ \angle ACB = \angle BEA = y \\ \angle BAE = \angle BAC = 2x ~(\text{common}) \\ \implies \Delta ABC ~ \Delta AEB ~ (\text{AA}) \\ \text{by cpst, } \dfrac{AB}{AE} = \dfrac{BC}{EB} = \dfrac{AC}{AB} \\ \dfrac{BC}{EB} = \dfrac{AC}{AB} \\ \dfrac{BC}{AC} = \dfrac{EB}{AB} \\ \dfrac{BC}{AC} = \dfrac{EC}{CD} ~ (\text{AB = CD, given. EC = BE, proved})\\ \text{In }\Delta CDA \text{ and } \Delta CEB \\ \dfrac{BC}{AC} = \dfrac{EC}{CD} \\ \angle C = \angle C ~ (\text{common}) \\ \implies \Delta CDA ~ \Delta CEB \\ \implies \angle CAD = \angle CBE \\ \implies x = y \\ \therefore 2x + 3y = 180 \\ 5y = 180 ~~ \text{and} ~~ 5x = 180 \\ y = x = 36 \\ \boxed{\therefore \angle BAC = 2x = 2 \times 36 = 72 \circle}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...