geometry

Geometry Level 3

given that A B = 85 AB= \sqrt{85} B C = 9 BC = 9 C A = 40 CA = \sqrt{40} T C = ? ? ? ? ? ? ? ? ? ? TC =?????????? ?????????? can be written as A B \sqrt{\frac{A}{B}} , FIND A+B, if A,B are coprime integers


The answer is 3001.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
Nov 9, 2014

let TC=y, and break up 85 \sqrt{85} into 2 parts: n 1 , n 2 n_1,n_2 let BT= n 1 n_1 , let TA = n 2 n_2 .................. lets use Pythagorean theorem. both BTC and ATC are right-angled triangle.. we get n 1 2 + y 2 = 9 2 , n 1 = 81 y 2 n_1^{2}+ y^{2} =9^2, n_1= \sqrt{81-y^2} n 2 2 + y 2 = 40 2 , n 2 = 40 y 2 n_2^{2}+ y^{2} =\sqrt{40}^2, n_2= \sqrt{40-y^2} we get n 1 + n 2 = 81 y 2 + 40 y 2 n_1+n_2= \sqrt{81-y^2}+\sqrt{40-y^2} since n 1 , n 2 n_1,n_2 is broken from 85 \sqrt{85} , n 1 + n 2 = 85 n_1+n_2=\sqrt{85} we get 85 = 81 y 2 + 40 y 2 \sqrt{85}= \sqrt{81-y^2}+\sqrt{40-y^2} square both sides 85 = 81 y 2 + 40 y 2 + 2 ( 40 y 2 ) ( 81 y 2 ) 85 = 81 -y^2 +40-y^2 +2\sqrt{(40-y^2)(81-y^2)} 85 = 121 2 y 2 + 2 3240 121 y 2 + y 4 85 = 121-2y^2 +2\sqrt{3240-121y^2+y^4} 36 = 2 y 2 + 2 3240 121 y 2 + y 4 -36 = -2y^2 +2\sqrt{3240-121y^2+y^4} 2 y 2 36 = 2 3240 121 y 2 + y 4 2y^2-36 =2\sqrt{3240-121y^2+y^4} 2 y 2 36 2 = 3240 121 y 2 + y 4 \frac{2y^2-36}{2} =\sqrt{3240-121y^2+y^4} y 2 18 = 3240 121 y 2 + y 4 y^2-18 =\sqrt{3240-121y^2+y^4} square both sides y 4 36 y 2 + 324 = 3240 121 y 2 + y 4 y^4 -36y^2 +324=3240-121y^2+y^4 36 y 2 + 324 = 3240 121 y 2 -36y^2 +324=3240-121y^2 85 y 2 + 324 = 3240 85y^2 +324=3240 85 y 2 = 2916 85y^2=2916 y 2 = 2916 85 y^2 = \frac{ 2916}{85} y = 2916 85 y =\sqrt{ \frac{2916}{85}} so, A= 2916, b= 85, A+B=2916+85= 3001 \boxed{3001}

There's an easier way,use Heron's law and calculate the area of the triangle which is 27.and then use (1/2)* TC * AB=27 or TC=54/sqrt 85 or TC=sqrt(2916/85),so ans is (2916+85)=3001

Rifath Rahman - 6 years, 6 months ago

Log in to reply

the formula seems big, but it actually took 1 minute to compute all, and heron is the obvious choice, i like the un-obvious

Aareyan Manzoor - 6 years, 6 months ago

Log in to reply

Its easy to calculate because that's pythagorean theorem and quardratic formula,anyway nice to see some un-obvious guy

Rifath Rahman - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...