Geometry – Area Chasing 2

Geometry Level pending

A B C D ABCD is a square with side length of 5 5 . Find the area of D E C \triangle DEC correct to one decimal place.


The answer is 10.2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

tan 15 = h x \tan 15 =\dfrac{h}{x} \implies x = h tan 15 x=\dfrac{h}{\tan 15} ( 1 ) \color{#D61F06}(1)

tan 30 = h 5 x \tan 30=\dfrac{h}{5-x} \implies 5 x = h tan 30 5-x=\dfrac{h}{\tan 30} ( 2 ) \color{#D61F06}(2)

Substitute ( 1 ) \color{#D61F06}(1) in ( 2 ) \color{#D61F06}(2) , we have

5 h tan 15 = h tan 20 5-\dfrac{h}{\tan 15}=\dfrac{h}{\tan 20}

5 = h tan 30 + h tan 15 5=\dfrac{h}{\tan 30} + \dfrac{h}{\tan 15}

h 0.915 h \approx 0.915

Therefore, the area of D E C \triangle DEC is

1 2 ( 5 ) ( 5 0.915 ) \dfrac{1}{2}(5)(5-0.915) \approx 10.2 \boxed{10.2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...