Geometry Fireballs!

Geometry Level 2

ABCD is a convex quadrilateral such that A B 2 + C D 2 = A D 2 + B C 2 AB^2+CD^2=AD^2+BC^2 what can we say about AC and BD?

AC+3AB=2BD AC=BD AC⊥BD AC+AB=BD

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the position vectors of A , B , C A, B, C and D D relative some reference system be a , b , c \overrightarrow a, \overrightarrow b, \overrightarrow c and d \overrightarrow d respectively. Then the given equation yields ( b a ) 2 + ( d c ) 2 = ( d a ) 2 + ( c b ) 2 (\overrightarrow b-\overrightarrow a) ^2+(\overrightarrow d-\overrightarrow c) ^2=(\overrightarrow d-\overrightarrow a) ^2+(\overrightarrow c-\overrightarrow b) ^2 . Simplifying we get ( c a ) ( d b ) = 0 (\overrightarrow c-\overrightarrow a) \cdot (\overrightarrow d-\overrightarrow b) =0 or A C B D = 0 \overrightarrow {\rm AC}\cdot \overrightarrow {\rm BD}=0 . Hence A C B D \boxed {\overrightarrow {\rm AC}\perp \overrightarrow {\rm BD}}

Good solution

Mohammed Imran - 1 year, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...