Geometry fraction

Geometry Level 4

In the triangle A B C ABC , B A C = 90 o \angle BAC={ 90 }^{ o } and A C > A B AC>AB . O O is the midpoint of B C BC and I I is the center of incircle of a triangle A B C ABC . If B I O = 90 o \angle BIO={ 90 }^{ o } , what is the value of A B A C \dfrac { AB }{ AC } ?

5 7 \frac {5}{7} 3 2 \frac { \sqrt { 3 } }{ 2 } 4 5 \frac {4}{5} 3 4 \frac {3}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 14, 2017

Let I B O = θ \angle IBO = \theta . Then, I O B = 9 0 θ \angle IOB = 90^\circ - \theta . And since incenter I I is the meeting point of angle bisectors of A B C \triangle ABC , then A B I = I B O = θ \angle ABI = \angle IBO = \theta and I C O = 1 2 A C O = 1 2 ( 9 0 A B O ) = 4 5 θ \angle ICO = \frac 12 \angle ACO = \frac 12 (90^\circ - \angle ABO) = 45^\circ - \theta .

Let B C BC be a a and the altitude of B I C \triangle BIC and B I O \triangle BIO , I D = h ID=h . We note that:

B I O : h tan θ + h tan ( 9 0 θ ) = O B h tan θ + h cot θ = a 2 1 tan θ + tan θ = a 2 h . . . ( 1 ) \begin{aligned} \triangle BIO: \quad \frac h{\tan \theta} + \frac h{\tan (90^\circ - \theta)} & = OB \\ \frac h{\tan \theta} + \frac h{\cot \theta} & = \frac a2 \\ \frac 1{\tan \theta} + \tan \theta & = \frac a{2h} & ...(1) \end{aligned}

B I C : h tan θ + h tan ( 4 5 θ ) = B C h tan θ + h ( 1 + tan θ ) 1 tan θ = a 1 tan θ + 1 + tan θ 1 tan θ = a h . . . ( 2 ) \begin{aligned} \triangle BIC: \quad \frac h{\tan \theta} + \frac h{\tan (45^\circ - \theta)} & = BC \\ \frac h{\tan \theta} + \frac {h(1+\tan \theta)}{1- \tan \theta} & = a \\ \frac 1{\tan \theta} + \frac {1+\tan \theta}{1- \tan \theta} & = \frac ah & ...(2) \end{aligned}

2 ( 1 ) = ( 2 ) : 2 tan θ + 2 tan θ = 1 tan θ + 1 + tan θ 1 tan θ 1 tan θ + 2 tan θ = 1 + tan θ 1 tan θ ( 1 tan θ ) ( 1 + 2 tan 2 θ ) = tan θ ( 1 + tan θ ) 1 tan θ + 2 tan 2 θ 2 tan 3 θ = tan θ + tan 2 θ 2 tan 3 θ tan 2 θ + 2 tan θ 1 = 0 tan θ = 1 2 \begin{aligned} 2(1) = (2): \quad \frac 2{\tan \theta} + 2\tan \theta & = \frac 1{\tan \theta} + \frac {1+\tan \theta}{1- \tan \theta} \\ \frac 1{\tan \theta} + 2\tan \theta & = \frac {1+\tan \theta}{1- \tan \theta} \\ (1- \tan \theta)(1+ 2 \tan^2 \theta) & = \tan \theta (1+\tan \theta) \\ 1 - \tan \theta + 2 \tan^2 \theta - 2 \tan^3 \theta & = \tan \theta + \tan^2 \theta \\ 2\tan^3 \theta - \tan^2 \theta + 2\tan \theta - 1 & = 0 \\ \implies \tan \theta & = \frac 12 \end{aligned}

Now we have A B A C = 1 tan 2 θ = 1 tan 2 θ 2 tan θ = 1 1 4 2 × 1 2 = 3 4 \dfrac {AB}{AC} = \dfrac 1{\tan 2\theta} = \dfrac {1-\tan^2 \theta}{2\tan \theta} = \frac {1-\frac 14}{2 \times \frac 12} = \boxed{\dfrac 34}

Can we go pure geometric? That will be a bit smarter .

Vishwash Kumar ΓΞΩ - 3 years, 11 months ago

Log in to reply

Wait and see if there are other solutions. Guess I am not that smart.

Chew-Seong Cheong - 3 years, 11 months ago

Log in to reply

I hve one. I will add.

Vishwash Kumar ΓΞΩ - 3 years, 11 months ago
G Silb
Jul 28, 2020

I attempted to solve it using trigonometry but resorted to geometry.

c = 2 ( x + y ) c = 2(x+y) - given

a = c x + r a=c-x+r - inspection

b = x + r b=x+r - inspection

y r = r x \frac{y}{r}=\frac{r}{x} implies r = x y r=\sqrt{x y}

Therefore

a = x + 2 y + x y a=x+2 y+\sqrt{x y}

b = x + x y b=x+\sqrt{x y}

Since c 2 = a 2 + b 2 c^2=a^2+b^2 we can solve for y y in terms of x x , obtaining (after a lot of algebra) y = x 4 y=\frac{x}{4} , so that b a = 3 4 \frac{b}{a}=\frac{3}{4} .

I am curious if anyone else did it this simple way, if they found an elegant way to do the algebra. Mine was ugly.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...