Suppose that x , y , z are reals positive number satisfying the conditional: x y z + x + z = y . Let the maximum is P P = x 2 + 1 2 − y 2 + 1 2 − z 2 + 1 4 z + ( z 2 + 1 ) z 2 + 1 3 z If P = n m Find the value of m + n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let x = t a n A , y = t a n B , c = t a n C From the conditional we have: x = 1 + y z y − z ⇔ t a n A = 1 + t a n B × t a n C t a n B − t a n C = t a n ( B − C ) ⇔ A = B − C + k π So 2 − π < A − B + C < π → k = 0 → A − B = − C P = 2 ( 1 + t a n 2 A 1 − 1 + t a n 2 B 1 ) − 1 + t a n 2 C 4 t a n C + ( 1 + t a n 2 C ) 1 + t a n 2 C 3 t a n C = 2 ( c o s 2 A − c o s 2 B ) − 4 s i n C + 3 s i n × c o s 2 C = c o s 2 A − c o s 2 B − 4 s i n C + 3 s i n × c o s 2 C = − 2 s i n ( A + B ) s i n ( A − B ) − 4 s i n C + 3 s i n C c o s 2 C = 2 s i n C s i n ( A + B ) − 4 s i n C + 3 s i n C c o s 2 C ⇒ P ≤ 2 s i n C − 4 s i n C + 3 s i n C c o s 2 C = s i n C ( 3 c o s 2 C − 2 ) = s i n C ( 1 − 3 s i n 2 C ) If s i n C > 3 3 ⇒ P < 0 . ,suppose that s i n C ≤ 3 3 By applying AM-GM,we have: P ≤ s i n 2 C ( 1 − 3 s i n C ) 2 = 6 6 s i n 2 C ( 1 − 3 s i n 2 C ) ( 1 − 3 s i n 2 C ) = 6 3 6 s i n 2 C + 1 − 3 s i n 2 C + 1 − 3 s i n 2 C = 9 2 = n m → m + n = 1 1