Geometry in inequality part II

Geometry Level 5

Suppose that x , y , z x,y,z are reals positive number satisfying the conditional: x y z + x + z = y xyz+x+z=y . Let the maximum is P P P = 2 x 2 + 1 2 y 2 + 1 4 z z 2 + 1 + 3 z ( z 2 + 1 ) z 2 + 1 P=\frac{2}{x^2+1}-\frac{2}{y^2+1}-\frac{4z}{\sqrt{z^2+1}}+\frac{3z}{(z^2+1)\sqrt{z^2+1}} If P = m n P=\frac{m}{n} Find the value of m + n m+n .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Son Nguyen
Jan 23, 2016

Let x = t a n A , y = t a n B , c = t a n C x=tan A,y=tan B,c=tan C From the conditional we have: x = y z 1 + y z x=\frac{y-z}{1+yz} t a n A = t a n B t a n C 1 + t a n B × t a n C = t a n ( B C ) A = B C + k π \Leftrightarrow tanA=\frac{tanB-tanC}{1+tanB\times tanC}=tan(B-C)\Leftrightarrow A=B-C+k\pi So π 2 < A B + C < π k = 0 A B = C \frac{-\pi }{2}< A-B+C< \pi \rightarrow k=0\rightarrow A-B=-C P = 2 ( 1 1 + t a n 2 A 1 1 + t a n 2 B ) 4 t a n C 1 + t a n 2 C + 3 t a n C ( 1 + t a n 2 C ) 1 + t a n 2 C P=2(\frac{1}{1+tan^2A}-\frac{1}{1+tan^2B})-\frac{4tanC}{\sqrt{1+tan^2C}}+\frac{3tanC}{(1+tan^2C)\sqrt{1+tan^2C}} = 2 ( c o s 2 A c o s 2 B ) 4 s i n C + 3 s i n × c o s 2 C =2(cos^2A-cos^2B)-4sinC+3sin\times cos^2C = c o s 2 A c o s 2 B 4 s i n C + 3 s i n × c o s 2 C =cos2A-cos2B-4sinC+3sin\times cos^2C = 2 s i n ( A + B ) s i n ( A B ) 4 s i n C + 3 s i n C c o s 2 C =-2sin(A+B)sin(A-B)-4sinC+3sinCcos^2C = 2 s i n C s i n ( A + B ) 4 s i n C + 3 s i n C c o s 2 C =2sinCsin(A+B)-4sinC+3sinCcos^2C P 2 s i n C 4 s i n C + 3 s i n C c o s 2 C = s i n C ( 3 c o s 2 C 2 ) = s i n C ( 1 3 s i n 2 C ) \Rightarrow P\leq 2sinC-4sinC+3sinCcos^2C=sinC(3cos^2C-2)=sinC(1-3sin^2C) If s i n C > 3 3 P < 0. sinC> \frac{\sqrt{3}}{3}\Rightarrow P< 0. ,suppose that s i n C 3 3 sinC\leq \frac{\sqrt{3}}{3} By applying AM-GM,we have: P s i n 2 C ( 1 3 s i n C ) 2 = 6 s i n 2 C ( 1 3 s i n 2 C ) ( 1 3 s i n 2 C ) 6 P\leq \sqrt{sin^2C(1-3sin^C)^2}=\frac{\sqrt{6sin^2C(1-3sin^2C)(1-3sin^2C)}}{\sqrt{6}} = 6 s i n 2 C + 1 3 s i n 2 C + 1 3 s i n 2 C 3 6 =\frac{\sqrt{\frac{6sin^2C+1-3sin^2C+1-3sin^2C}{3}}}{\sqrt{6}} = 2 9 = m n m + n = 11 \LARGE =\frac{2}{9}=\frac{m}{n}{\color{#3D99F6} \rightarrow m+n=11}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...