Geometry in inequality

Geometry Level 5

2 a 2 + 1 + 1 b 2 + 1 + 1 c 2 + 1 \large{ \dfrac{2}{\sqrt{a^2+1}} + \dfrac{1}{\sqrt{b^2+1}} + \dfrac{1}{\sqrt{c^2+1}} }

Suppose a , b , c a,b,c are positive real numbers satisfying a + b + c = a b c a+b+c = abc . Let P P be the maximum value of the above expression. Find the value of 10000 P \left\lfloor 10000P \right\rfloor .

Clarification : The numerator of the first fraction is indeed 2.


The answer is 22500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jan 21, 2016

Since a , b , c > 0 a,b,c > 0 , we can find 0 < A , B , C < 1 2 π 0 < A,B,C < \tfrac12\pi such that a = tan A a = \tan A , b = tan B b = \tan B and c = tan C c = \tan C . But since tan ( A + B + C ) = a + b + c a b c 1 a b a c b c = 0 , \tan(A+B+C) \; = \; \frac{a+b+c - abc}{1 - ab - ac - bc} \; = \; 0 \;, it follows that A + B + C = π A+B+C = \pi , so that A , B , C A,B,C are the angles of an acute-angled triangle. Thus the question asks us to maximize 2 cos A + cos B + cos C 2\cos A + \cos B + \cos C over all such triangles. We have 2 cos A + cos B + cos C = 2 cos B + C 2 cos B C 2 + 2 cos A 2 cos B + C 2 + 2 cos A = 2 cos B + C 2 + 2 cos ( π B C ) = 2 cos B + C 2 2 cos ( B + C ) = 2 cos B + C 2 4 cos 2 B + C 2 + 2 = 9 4 ( 2 cos B + C 2 1 2 ) 2 \begin{array}{rcl} 2\cos A + \cos B + \cos C & = & 2\cos\tfrac{B+C}{2} \cos\tfrac{B-C}{2} + 2\cos A \\ & \le & 2\cos\tfrac{B+C}2 + 2\cos A \\ & = & 2\cos\tfrac{B+C}2 + 2\cos(\pi - B-C) \\ & = & 2\cos\tfrac{B+C}2 - 2\cos(B+C) \\ & = & 2\cos\tfrac{B+C}2 - 4\cos^2\tfrac{B+C}2 + 2 \\ & = & \tfrac94 - \left(2\cos\tfrac{B+C}2 - \tfrac12\right)^2 \end{array} so we deduce that 2 cos A + cos B + cos C 9 4 2\cos A + \cos B + \cos C \,\le \, \tfrac94 , with equality when B = C B=C and cos B + C 2 = 1 4 \cos\tfrac{B+C}2 = \tfrac14 . Thus the correct value of P P is 9 4 \tfrac94 , and so 10000 P = 22500 10000P \,=\, 22500 . There is no need for the integer part.

Nice solution ,I got 2 c o s A + c o s B + c o s C 2 cos A +cos B + cos C but after that no clue to proceed further.

Akshay Sharma - 5 years, 4 months ago

I was already on trying to maximize 2 cos A + cos B + cos C \displaystyle 2\cos A + \cos B + \cos C but I wasn't able to push through.

Reineir Duran - 5 years, 4 months ago

@Mark Hennings , we really liked your comment, and have converted it into a solution. If you subscribe to this solution, you will receive notifications about future comments.

Brilliant Mathematics Staff - 5 years, 4 months ago

lovely solution .I solved it using calculus but I assumed that B=C based on the notion that Cos B +Cos <= 2 Cos (B+C)/2 . For example if B+C=80 then Cos (B+C) is maximized when B=40=C. Is my reasoning sound?

Des O Carroll - 5 years, 4 months ago

Log in to reply

Yes, if you mean to say "... if B + C = 40 B+C=40 then cos B + cos C \cos B + \cos C is maximized..." because cos B + cos C 2 cos 1 2 ( B + C ) \cos B + \cos C \le 2\cos\tfrac12(B+C) is an equality when B = C B=C , because the extra factor cos 1 2 ( B C ) \cos\tfrac12(B-C) is then equal to 1 1 .

Mark Hennings - 5 years, 4 months ago

Same way I got....2cosA+cosB+cosC.....but got lost then.....wonderful solution sir....

rajdeep brahma - 3 years ago
Rishabh Jain
Jan 21, 2016

Let a=tanA,b=tanB and c=tanC s.t 0 A , B , C π 2 \small{\color{goldenrod}{\text{Let a=tanA,b=tanB and c=tanC s.t 0 }\leq A,B,C \leq \dfrac{\pi}{2}}} a+b+c=abc simply states that A,B,C are angles of a triangle and we have to find maximum of 2tanA+tanB+tanC. Using Using Method of Lagrange’s Multipliers \color{forestgreen}{\text{Using Method of Lagrange's Multipliers}}

2tanA+tanB+tanC= λ \lambda tanAtanBtanC, under the constraint that they obey Angle sum property i.e A+B+C= π \pi

Solving we get, 2 sin A = sin B = sin C = λ 2\sin A=\sin B=\sin C=-\lambda B = C a n d sin B = 2 sin A = 2 sin ( π 2 B ) \Rightarrow B=C ~and ~\sin B=2\sin A=2 \sin(\pi-2B) \Rightarrow cosB=cosC= 1 4 \dfrac{1}{4} and cosA= 7 8 . \dfrac{7}{8}. Hence maximum value occurs when cos B = cos C = 1 4 a n d cos A = 7 8 \small{\color{#3D99F6}{\cos B=\cos C=\dfrac{1}{4} and \cos A=\dfrac{7}{8}}} Hence, Maximum value= 2 ( 7 8 ) + 1 4 + 1 4 = 2.25 2(\dfrac{7}{8})+\dfrac{1}{4}+\dfrac{1}{4}=2.25 10000 × 2.25 = 22500 \Large{10000\times 2.25=22500}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...