Geometry in the EMIC

Geometry Level 3

M M is the midpoint of the side C D CD of a square A B C D ABCD of side lenght 24 c m 24 cm . P P is a point such that P A = P B = P M PA=PB=PM . If the minimum length of P M PM is K c m K cm , what is the value of K K ?


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 10, 2014

Let the midpoint of A B AB be N N and l = P A = P B = P M l = PA = PB =PM . When l l is minimum when P M PM is perpendicular to C D CD and M P N MPN is a straight line. Then P N = 24 l PN = 24 - l . By Pythagoras theorem, we have:

A N 2 + P N 2 = A P 2 AN^2 + PN^2 = AP^2

1 2 2 + ( 24 l ) 2 = l 2 \Rightarrow 12^2 + (24 - l)^2 = l^2

144 + 576 48 l + l 2 = l 2 \quad 144 + 576 - 48l + l^2 = l^2

l = 720 48 = 15 \Rightarrow l = \dfrac{720}{48} = \boxed{15}

Such great solution, much wow!!! :)

Krishna Ar - 6 years, 9 months ago
Deepanshu Gupta
Sep 12, 2014

L e t A B C D i n X Y p l a n e s u c h t h a t A ( 12 , 12 ) & B ( 12 , 12 ) & C ( 12 , 12 ) & D ( 12 , 12 ) . S i n c e P A = P B = P C s o P m u s t l i e o n Y a x i s ( B y S y m m e t r y ) l e t P ( 0 , α ) . N o w P M = P A ( α 12 ) 2 = ( α + 12 ) 2 + ( 12 ) 2 α = 3 P M = 15 Let\quad ABCD\quad in\quad X-Y\quad plane\quad such\quad that\\ A(-12,-12)\quad \& \quad B(12,-12)\quad \& \quad C(12,12)\\ \& \quad D(-12,12).\quad Since\quad PA=PB=PC\\ so\quad 'P'\quad must\quad lie\quad on\quad Y-axis\quad (By\quad Symmetry)\\ let\quad P(0,\alpha ).\quad Now\quad PM=PA\\ \Longrightarrow { \quad (\alpha -12 })^{ 2 }=\quad { (\alpha +12) }^{ 2 }+{ (12 })^{ 2 }\\ \Longrightarrow \quad \alpha =-3\\ \Longrightarrow PM=15 .

If M M is the midpoint of C D CD , and P A = P B = P M PA=PB=PM , then P P is the circumcentre of A B M \triangle ABM . Now, A M B = 180 2 tan 1 ( 2 ) \angle AMB = 180-2\tan^{-1} (2) . Thus, sin A M B = 0.8 \sin\angle AMB = 0.8

By sine rule, A B sin A M B = 2 R \frac{AB}{\sin\angle AMB}=2R or 24 0.8 = 2 P M \frac{24}{0.8}=2PM

Thus, P M = 15 PM=\boxed{15}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...