Geometry - Inadequate Information #2

Geometry Level 5

As shown in the figure above, a circle is inscribed in quadrilateral A B C D , ABCD, where M M and N N are midpoints of A C \overline{AC} and B D , \overline{BD}, respectively, A B = 5 , C D = 9 \overline{AB}=5, \overline{CD}=9 and A C 2 + B D 2 + 4 M N 2 = 218. \overline{AC}^2+\overline{BD}^2+4 \overline{MN}^2=218.

Find the value of B C × D A . \overline{BC}\times\overline{DA}.


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Boi (보이)
Jul 17, 2017

Relevant wiki: Apollonius's Theorem

This solution uses Apollonius' Theorem .


Use it on A B D \triangle ABD , B C D \triangle BCD , and A C D \triangle ACD respectively.

A B 2 + A D 2 = 2 ( A N 2 + B N 2 ) A \overline{AB}^2+\overline{AD}^2=2\left(\overline{AN}^2+\overline{BN}^2\right)~\cdots\boxed{A}~

B C 2 + C D 2 = 2 ( C N 2 + B N 2 ) B \overline{BC}^2+\overline{CD}^2=2\left(\overline{CN}^2+\overline{BN}^2\right)~\cdots\boxed{B}~

A N 2 + C N 2 = 2 ( M N 2 + A M 2 ) C \overline{AN}^2+\overline{CN}^2=2\left(\overline{MN}^2+\overline{AM}^2\right)~\cdots\boxed{C}~

Calculate A + B + 2 × C \boxed{A}+\boxed{B}+2\times\boxed{C} .

A B 2 + B C 2 + C D 2 + D A 2 = 4 A M 2 + 4 B N 2 + 4 M N 2 = A C 2 + B D 2 + 4 M N 2 \begin{aligned} \overline{AB}^2+\overline{BC}^2+\overline{CD}^2+\overline{DA}^2&=4\overline{AM}^2+4\overline{BN}^2+4\overline{MN}^2 \\ &=\overline{AC}^2+\overline{BD}^2+4\overline{MN}^2 \end{aligned}


Therefore, B C 2 + D A 2 = 112 \overline{BC}^2+\overline{DA}^2=112 .

From the question, we know that B C + D A = 14 \overline{BC}+\overline{DA}=14 .

B C D A = 42 \therefore~\overline{BC}\cdot\overline{DA}=\boxed{42} .


Now let's prove that this configuration of points actually exists.

From the information above, we can safely say that B C = 7 7 \overline{BC}=7-\sqrt{7} and D A = 7 + 7 . \overline{DA}=7+\sqrt{7}.

Since we only need to prove that at least one configuration exists, I'm going to prove only one.

Consider B C D = π 2 . \angle BCD=\dfrac{\pi}{2}.

Then let O , P , Q O,~P,~Q be the center of the circle, and the points where B C , C D \overline{BC},~\overline{CD} contact with the circle, respectively.

We're going to draw a tangent line B X \overline{BX} and D Y \overline{DY} from point B B and point D , D, such that B X = 5 \overline{BX}=5 and D Y = 7 + 7 . \overline{DY}=7+\sqrt{7}.

r r is the radius of the circle, and then let's just say 0 < 2 < r < 4 < 7 7 , 0<2<r<4<7-\sqrt{7}, to make this easier.

B X , C Y \overline{BX},~\overline{CY} meets with the circle at points R R and S S respectively.

Then note that C P = C Q = r . \overline{CP}=\overline{CQ}=r.

From it we can see that B P = 7 7 r , X R = 2 + 7 + r , D Q = 9 r , Y S = 2 + 7 + r . \overline{BP}=7-\sqrt{7}-r,~\overline{XR}=-2+\sqrt{7}+r,~\overline{DQ}=9-r,~\overline{YS}=-2+\sqrt{7}+r.

Oh. Seems like X R = Y S . \overline{XR}=\overline{YS}. Then X O R = Y O S . \angle XOR=\angle YOS.

Then let's just say P O C = α , B O R = β , Y O S = γ , D O Q = δ . \angle POC=\alpha,~\angle BOR=\beta,~\angle YOS=\gamma,~\angle DOQ=\delta.

Since we already know O X = O Y , \overline{OX}=\overline{OY,} for X X and Y Y to become an identical point, we need α + β + γ + δ = π . \alpha+\beta+\gamma+\delta=\pi.

Then, tan ( α + δ ) = tan ( β + γ ) . \tan(\alpha+\delta)=-\tan(\beta+\gamma).

tan α = r r , tan β = 7 7 r r , tan γ = 2 + 7 + r r , tan δ = 9 r r . \tan\alpha=\dfrac{r}{r},~\tan\beta=\dfrac{7-\sqrt{7}-r}{r},~\tan\gamma=\dfrac{-2+\sqrt{7}+r}{r},~\tan\delta=\dfrac{9-r}{r}.

tan ( α + δ ) + tan ( β + γ ) = r r + 9 r r 1 9 r r + 7 7 r r + 2 + 7 + r r 1 ( 7 7 r ) ( 2 + 7 + r ) r 2 = 9 2 r 9 + 5 r 2 r 2 ( 9 2 7 ) r + ( 21 9 7 ) = 0 \begin{aligned} \tan(\alpha+\delta)+\tan(\beta+\gamma) &=\dfrac{\dfrac{r}{r}+\dfrac{9-r}{r}}{1-\dfrac{9-r}{r}}+\dfrac{\dfrac{7-\sqrt{7}-r}{r}+\dfrac{-2+\sqrt{7}+r}{r}}{1-\dfrac{(7-\sqrt{7}-r)(-2+\sqrt{7}+r)}{r^2}} \\ & =\dfrac{9}{2r-9}+\dfrac{5r}{2r^2-(9-2\sqrt{7})r+(21-9\sqrt{7})} = 0 \end{aligned}

Then 10 r 2 45 r + 18 r 2 9 ( 9 2 7 ) r + 9 ( 21 9 7 ) = 0. 10r^2-45r+18r^2-9(9-2\sqrt{7})r+9(21-9\sqrt{7})=0.

Let f ( r ) = 28 r 2 45 r 9 ( 9 2 7 ) r + 9 ( 21 9 7 ) . f(r)=28r^2-45r-9(9-2\sqrt{7})r+9(21-9\sqrt{7}).

f ( 2 ) = 22 9 ( 18 4 7 + 21 9 7 ) < 22 9 ( 39 35 ) = 22 36 < 0 f ( 4 ) = 268 9 ( 36 8 7 + 21 9 7 ) > 268 9 ( 57 44 ) = 151 > 0 \begin{aligned} f(2) &=22-9(18-4\sqrt{7}+21-9\sqrt{7}) \\ &<22-9(39-35)=22-36<0 \\ \\ f(4) &=268-9(36-8\sqrt{7}+21-9\sqrt{7}) \\ &>268-9(57-44)=151>0 \end{aligned}

Therefore f ( r ) = 0 f(r)=0 has a solution where 2 < r < 4 , 2<r<4, and therefore, the configuration of points A , B , C , D A,~B,~C,~D exists such that it would satisfy the given condition.


Formula: (Euler's midpoint theorem)

A B 2 + B C 2 + C D 2 + D A 2 = A C 2 + B D 2 + 4 M N 2 \overline{AB}^2+\overline{BC}^2+\overline{CD}^2+\overline{DA}^2=\overline{AC}^2+\overline{BD}^2+4\overline{MN}^2

You have shown that if such a configuration exists, the answer is 42. Does such a configuration exist?

Calvin Lin Staff - 3 years, 10 months ago

Log in to reply

Proved it! Thanks for the advice! :D

Boi (보이) - 3 years, 10 months ago

@Calvin Lin Uhm, if you won't mind, this problem is more related to Apollonius' theorem than just problem solving on triangle. Can you change the relevant wiki, please? Sorry to bother you.

Boi (보이) - 3 years, 10 months ago

L e t a = A B , b = B C , c = C D , d = D A ; p = A C , q = B D ; x = M N . P i t o t T h e o r e m : a + c = b + d . ( b 2 + 2 b d + d 2 ) = ( a + c ) 2 = 196. E u l e r s M i d p o i n t T h e o r e m : a 2 + b 2 + c 2 + d 2 = p 2 + q 2 + 4 x 2 = 218. b 2 + d 2 = 218 5 2 9 2 = 112. 196 = b 2 + 2 b d + d 2 = ( b 2 + d 2 + 2 b d ) = 112 + 2 b d . B C D A = b d = 1 2 ( 196 112 ) = 42. Let ~a=AB,~~b=BC,~~c=CD,~~d=DA;~~~~~~~p=AC,~~q=BD;~~~~~~~x=MN.\\ Pitot ~Theorem:-~~~~~a+c=b+d.~~~~~~\implies~(b^2+2bd+d^2)=(a+c)^2=196.\\ Euler's ~Midpoint~ Theorem:-~~~~~a^2+b^2+c^2+d^2=p^2+q^2+4x^2=218.~~~~~~\implies~b^2+d^2=218-5^2-9^2=112 . \\ \therefore~196=b^2+2bd+d^2=(b^2+d^2+2bd)=112+2bd.\\ \therefore~BC*DA=bd=\frac 1 2*(196-112)=\Large~~~~\color{#D61F06}{42}.
The author Mr. H.M. 유 has already shown the existence of such a quadrilateral.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...