Geometry Kings, Solve This!

Geometry Level 5

Let the excircle of the triangle A B C ABC lying opposite to A A touch its side B C BC at the point A 1 A_{1} . Define the points B 1 B_{1} and C 1 C_{1} analogously. Suppose that the circumcentre of the triangle A 1 B 1 C 1 A_{1}B_{1}C_{1} lies on the circumcircle of the triangle A B C ABC . Find the measure of the largest angle in triangle A B C ABC in degrees.


The answer is 90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

It is not logical that there would be three different angles for the Δ A B C . There must be some symmetry. So, the triangle must be an isosceles. Let BC be the base. A 1 A B C . \text{It is not logical that there would be three different angles for the } \Delta ABC. \\ \text{There must be some symmetry.}\\ \text{ So, the triangle must be an isosceles. Let BC be the base.}~\therefore ~A_1A\perp BC. \\ The line of symmetry is thus A A 1 . Plotting the triangle ABC in X-Y, plane, C(0,0), and BC along X-asis, A above BC with A = 2 α . \text{The line of symmetry is thus }AA_1. ~~~~~ \text{Plotting the triangle ABC in X-Y, plane,}\\ \text{C(0,0), and BC along X-asis, A above BC with } \angle A= 2\alpha.\\ L e t O , O 1 b e t h e c i r c u m c e n t e r s o f Δ s A B C , A 1 B 1 , C 1 . O B t h e e x c e n t e r , e x c i r c l e t o u c h i n g A C a t B 1 . Let ~ O,~ O_1 ~be~ the ~ circumcenters ~ of ~ \Delta s ABC, ~A_1B_1,C_1.\\ O_B ~ the ~ ex-center,~~ex-circle ~ touching ~ AC ~ at B_1.\\ C O B , a n d A O B are external angle bisectors. all angles as shown on the sketch. O_1 must be above BC on the side of A. CO_B,~ and ~AO_B ~\text{ are external angle bisectors. } \therefore ~ \text{all angles as shown on the sketch.} \\ \text{O\_1 must be above BC on the side of A.}\\ B e c a u s e o f s y m m e t r y , A 1 , A , O 1 , O m u s t b e o n A A 1 , t h e l i n e o f s y m m e t r y . S o , O 1 m u s t b e a t A . W i t h o u t l o s s o f g e n e r a l i t y l e t A C = 1. B U T i n Δ O B A C , b a s e a n g l e s a r e e q u a l , A O B = A C = 1. Because~ of ~ symmetry, ~ A_1, ~ A, ~ O_1, ~ O ~ must ~ be ~ on ~AA_1,~ the ~ line ~ of ~ symmetry.\\ So, O_1 ~ must ~ be ~ at ~ A. \\ Without ~ loss ~ of ~ generality ~ let ~ AC=1. ~ BUT ~ in ~ \Delta O_BAC,~ base ~ angles ~ are ~ equal, ~ \therefore~AO_B=AC=1.\\ A i s ( S i n α , C o s α ) . O B A C = A C B , A O B B C . O B X = A O B S i n α = 1 S i n α , O B Y = A Y = C o s α . A ~ is ~ (-Sin\alpha,Cos\alpha). ~ \because ~ \angle O_BAC=\angle ACB, AO_B || BC.\\ \color{#3D99F6}{O_{B_X}=AO_B - Sin\alpha=1 - Sin\alpha, ~~ O_{B_Y}=A_Y=Cos\alpha.}\\ R e m e m b e r , A O 1 . C i r c u m r a d i u s o f A 1 B 1 C 1 , R 1 = O 1 A 1 = O 1 B 1 . O 1 A 1 = 1 C o s α . O 1 B 1 = C o s α . B 1 C O 1 C = 1 C o s α 1 . Remember, ~ A\equiv O_1. ~~~Circumradius of A_1B_1C_1, ~ R_1=O_1A_1=O_1B_1. ~~ O_1A_1=1*Cos\alpha.\\ \therefore ~O_1B_1=Cos\alpha. ~~ \therefore ~ \dfrac{B_1C}{O_1C}=\dfrac{1 - Cos\alpha}{ 1}.\\ B 1 i s ( ( 1 C o s α ) ( S i n α ) , ( 1 C o s α ) C o s α ) . S l o p B 1 O B = O B Y B 1 Y O B X B 1 X \implies~\color{#3D99F6}{ B_1 ~ is ~\left ( (1 - Cos\alpha)*( - Sin\alpha),~ (1 - Cos\alpha)*Cos\alpha \right ).}\\ \therefore ~Slop ~ B_1O_B=\dfrac{O_{B_Y} - B_{1_Y} }{ O_{B_X} - B_{1_X} }\\ = C o s α ( 1 C o s α ) C o s α 1 S i n α ( 1 C o s α ) ( S i n α . ) s l o p B 1 O B = C o s 2 α 1 C o s α S i n α . =\dfrac{ Cos\alpha - (1 - Cos\alpha)*Cos\alpha}{ 1 - Sin\alpha - (1 - Cos\alpha)*( - Sin\alpha.)}\\ \therefore ~\color{#3D99F6}{ slop ~ ~ B_1O_B =\dfrac{ Cos^2\alpha}{1 - Cos\alpha*Sin\alpha}.}\\ B 1 O B A C . S l o p A C = C o t α . s l o p B 1 O B = T a n α . S o l v i n g = C o s 2 α 1 C o s α S i n α T a n / a l p h a = 0 , i n g r a p h i n g c a l c u l a t o r , α = 4 5 o . g r e a t e s t a n g l e A = 2 45 = 9 0 o . B_1O_B ~ \perp ~AC. ~~Slop ~ AC = - Cot\alpha. ~~ \therefore ~~\color{#3D99F6}{ slop ~ ~ B_1O_B =Tan\alpha.}\\ Solving =\dfrac{ Cos^2\alpha}{1 - Cos\alpha*Sin\alpha} - Tan/alpha= 0, ~ in ~graphing ~ calculator,\\ \alpha=45^o. ~~~~~~~~\implies ~ greatest ~ angle ~A=2*45=90^o.

This is problem No.3 of IMO 2013.

The official solution is attached below.

Uhh... How is 2 A 0 B 0 C 0 = 18 0 A B C 2 \angle A_0B_0C_0 = 180^{\circ}- \angle ABC ?

Deeparaj Bhat - 5 years ago
Trevor Arashiro
Oct 30, 2015

How are we supposed to know which angle is angle B? I knew it was a 90-45-45 but I didn't know to answer 90 or 45 so I just guessed 90

"I knew it was a 90-45-45 ".How did you know this ? Please let us know. Thanks.

Niranjan Khanderia - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...