Given are nonnegative real values, such that , find the maximum value of .
Solve this problem without any calculus.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Substitute z = 3 − x − y into the expression in question yields F : = − 8 y 2 + 2 4 y − 1 0 x y − 6 x 2 + 1 8 x .
By completing the square , F 0 0 0 0 0 = = = = = = − 8 y 2 + 2 4 y − 1 0 x y − 6 x 2 + 1 8 x − 2 ( 4 y 2 − 1 2 y + 5 x y ) − 6 x 2 + 1 8 x − 2 [ ( 2 y − 3 + 4 5 x ) 2 − 9 + 2 1 5 x − 1 6 2 5 x 2 ] − 6 x 2 + 1 8 x − 2 ( 2 y + 4 5 x − 3 ) 2 − 8 2 3 ( x 2 − 2 3 2 4 x − 2 3 1 4 4 ) − 2 ( 2 y + 4 5 x − 3 ) 2 − 8 2 3 [ ( x − 2 3 1 2 ) 2 − 2 3 2 1 2 2 − 2 3 1 4 4 ] − 2 ⩾ 0 ( 2 y + 4 5 x − 3 ) 2 − 8 2 3 ⩾ 0 ( x − 2 3 1 2 ) 2 + 2 3 4 3 2 ⩽ 2 3 4 3 2 ≈ 1 8 . 7 8 3
The maximum occurs when 2 y − 4 5 x − 3 = x − 2 3 1 2 = 0 ⇔ ( x , y , z ) = ( 2 3 1 2 , 2 3 2 7 , 2 3 3 0 ) .