geometry or algebra

Geometry Level 2

a , b , c a,b,c denote sides opposite to angles α , β , γ \alpha, \beta, \gamma . Given that 1 b + c + 1 a + c = 3 a + b + c \frac { 1 }{ b+c } +\frac { 1 }{ a+c } =\frac { 3 }{ a+b+c } , then find angle γ \gamma .


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akash Deep
Aug 2, 2014

1 b + c + 1 a + c = 3 a + b + c a f t e r s o l v i n g w e g e t ( a + b + c ) ( a + b + c + c ) = 3 ( b + c ) ( a + c ) o n s i m p l i f i c a t i o n w e g e t a 2 + b 2 c 2 = a b m u l t i p l y i n g b o t h s i d e s b y 2 w e g e t 2 ( a 2 + b 2 c 2 ) = 2 a b 2 { a 2 + b 2 c 2 2 a b } = 1 b y c o s i n e r u l e , c o s c = a 2 + b 2 c 2 2 a b 2 c o s c = 1 c o s c = 1 2 s o a n g l e c = 60 \frac { 1 }{ b+c } +\frac { 1 }{ a+c } =\frac { 3 }{ a+b+c } \quad after\quad solving\quad we\quad get\\ (a+b+c)(a+b+c+c)\quad =\quad 3(b+c)(a+c)\\ on\quad simplification\quad we\quad get\quad \\ { a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 }\quad =\quad ab\\ multiplying\quad both\quad sides\quad by\quad 2\quad we\quad get\\ 2({ a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 })\quad =\quad 2ab\\ 2\left\{ \frac { { a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 } }{ 2ab } \right\} =\quad 1\\ by\quad cosine\quad rule\quad ,\quad cos\quad c\quad =\quad \frac { { a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 } }{ 2ab } \\ 2\quad cos\quad c\quad =\quad 1\\ cos\quad c\quad =\quad \frac { 1 }{ 2 } \quad so\quad angle\quad c\quad =\quad 60\\

Note that a = b = c = 1 a=b=c=1 works, so the answer is 60 60 .

Daniel Liu - 6 years, 10 months ago

Log in to reply

actually a=b=c would do :D

Ko Io - 6 years, 10 months ago

Yes....but tell me that how would you find that a=b=c=1

Rahul Kumar - 6 years, 10 months ago

Log in to reply

For that you need to look into @akash deep 's s o l u t i o n solution . :P

If you still can't understand .....write back

Arya Samanta - 6 years, 10 months ago

Gamma is not specified.therefore alpha must be=to gamma= beta= 60

Godwin Tom George - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...