Geometry or calculus? II

Calculus Level 5

Given a ellipse with equation 2 x 2 + 3 y 2 + x y 5 = 0 2x^2+3y^2+x-y-5=0 and a point P ( 3 , 1 ) P(3,-1) , there are two lines passing through P P that are also tangent to the ellipse. One line is represented by the equation a x + b y c = 0 ax+by-c=0 and the other one is d x e y f = 0 dx-ey-f=0 , where a , b , c , d , e , f > 0 a,b,c,d,e,f>0 , gcd ( a , b , c ) = 1 \gcd(a,b,c)=1 and gcd ( d , e , f ) = 1 \gcd(d,e,f)=1 . Find d + e + f 2 a + b + c \dfrac{d+e+f-2}{a+b+c} .


The answer is 104.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ronak Agarwal
Oct 6, 2014

A very well known result will greatly help us here that is :

Combined equations of tangents from a point ( u , v ) (u,v) to a conic

a x 2 + 2 h x y + b y 2 + 2 g x + 2 f y + c = 0 a{x}^{2}+2hxy+b{y}^{2}+2gx+2fy+c=0

is given by :

T 2 = S S 1 {T}^{2}=S{S}_{1}

where T = a u x + h ( x v + y u ) + b v y + g ( x + u ) + f ( y + v ) + c T=aux+h(xv+yu)+bvy+g(x+u)+f(y+v)+c

S = a x 2 + 2 h x y + b y 2 + 2 g x + 2 f y + c S=a{x}^{2}+2hxy+b{y}^{2}+2gx+2fy+c

S 1 = a u 2 + 2 h u v + b v 2 + 2 g u + 2 f v + c {S}_{1}=a{u}^{2}+2huv+b{v}^{2}+2gu+2fv+c

In this question we have :

u = 3 , v = 1 , a = 2 , h = 0 , b = 3 , g = 1 2 , h = 1 2 , c = 5 u=3,v=-1,a=2,h=0,b=3,g=\frac{1}{2},h=-\frac{1}{2},c=-5

Writing the equation we have :

( 13 x 7 y 6 2 ) 2 = 20. ( 2 x 2 + 3 y 2 + x y 5 ) {(\frac{13x-7y-6}{2})}^{2}=20.(2{x}^{2}+3{y}^{2}+x-y-5)

Simplifying it we get :

9 x 2 191 y 2 236 x + 164 182 x y + 436 = 0 9{x}^{2}-191{y}^{2}-236x+164-182xy+436=0

Factorising it we get :

( 9 x 191 y 218 ) ( x + y 2 ) = 0 -(9x-191y-218)(x+y-2)=0

We can simply say that the lines are :

x + y 2 = 0 x+y-2=0

9 x 191 y 218 9x-191y-218

So we get :

a = b = 1 , c = 2 , d = 9 , e = 191 , f = 218 a=b=1,c=2,d=9,e=191,f=218

Finally we get :

d + e + f 2 a + b + c = 104 \boxed{\frac{d+e+f-2}{a+b+c}=104}

Factorisation is really tough part ...it takes much time

Karan Shekhawat - 6 years, 8 months ago

Log in to reply

You can make it a quadratic in y and solve for y to get the two factors.

Ronak Agarwal - 6 years, 8 months ago

Log in to reply

Ahh ... I missed That ... Thanks I will use it in future

Karan Shekhawat - 6 years, 8 months ago

I just did via general approach and it has taken 3 pages to get the answer :D...

Kïñshük Sïñgh - 6 years, 8 months ago
Justin Tuazon
Nov 17, 2014

L e t t h e e q u a t i o n ( s ) o f t h e l i n e ( s ) t a n g e n t t o 2 x 2 + 3 y 2 + x y 5 = 0 b e y = m x + b S i n c e y = m x + b p a s s e s t h r o u g h P ( 3 , 1 ) , y = m ( x 3 ) 1 L e t A = x 3 S u b s t i t u t e y = m A 1 t o 2 x 2 + 3 y 2 + x y 5 = 0 , 2 x 2 + 3 ( m A 1 ) 2 + x m A + 1 5 = 0 2 x 2 + 3 ( m 2 A 2 2 m A + 1 ) + x m A 4 = 0 2 x 2 + 3 m 2 A 2 7 m A + x 1 = 0 2 x 2 + 3 m 2 ( x 2 6 x + 9 ) 7 m ( x 3 ) + x 1 = 0 2 x 2 + 3 m 2 x 2 18 m 2 x + 27 m 2 7 m x + 21 m + x 1 = 0 x 2 ( 2 + 3 m 2 ) + x ( 18 m 2 7 m + 1 ) + 27 m 2 + 21 m 1 = 0 S i n c e t h e l i n e i s t a n g e n t t h e d i s c r i m i n a n t , D , i s e q u a l t o 0 D = ( 18 m 2 7 m + 1 ) 2 4 ( 2 + 3 m 2 ) ( 27 m 2 + 21 m 1 ) = ( 324 m 4 + 252 m 3 + 13 m 2 14 m + 1 ) 4 ( 81 m 4 + 63 m 3 + 51 m 2 + 42 m 2 ) = 13 m 2 204 m 2 14 m 168 m + 1 + 8 = 191 m 2 182 m + 9 = 0 191 m 2 182 m + 9 = 0 191 m 2 + 182 m 9 = 0 m = 91 ± 8281 + 1719 191 m = 91 + 100 191 , 91 100 191 m = 9 191 , 1 S i n c e y = m ( x 3 ) 1 , S u b s t i t u t i n g m = 9 191 , y = 9 x 191 27 191 1 191 y = 9 x 27 191 9 x + 191 y = 218 9 x 191 y 218 = 0 T h e e q u a t i o n 9 x 191 y 218 = 0 i s i n t h e f o r m d x e y f = 0 w h e r e d > 0 , e > 0 , f > 0 , a n d g c d ( d , e , f ) = 1 d = 9 , e = 191 , f = 218 S u b s t i t u t i n g m = 1 , y = x + 3 1 y = x + 2 x + y 2 = 0 T h e e q u a t i o n x + y 2 = 0 i s i n t h e f o r m a x + b y c = 0 w h e r e a > 0 , b > 0 , c > 0 , a n d g c d ( a , b , c ) = 1 a = 1 , b = 1 , c = 2 { a = 1 b = 1 c = 2 d = 9 e = 191 f = 218 d + e + f 2 a + b + c = 9 + 191 + 218 2 4 = 416 4 = 104 T h e r e f o r e , d + e + f 2 a + b + c = 104 Let\quad the\quad equation(s)\quad of\quad the\quad line(s)\quad tangent\quad to\quad \\ \\ 2{ x }^{ 2 }+3{ y }^{ 2 }+x-y-5=0\quad be\quad y=mx+b\\ \\ Since\quad y=mx+b\quad passes\quad through\quad P(3,-1),\\ \\ \quad \quad \quad y=m(x-3)-1\\ \\ Let\quad A=x-3\\ \\ Substitute\quad y=mA-1\quad to\quad 2{ x }^{ 2 }+3{ y }^{ 2 }+x-y-5=0,\\ \\ 2{ x }^{ 2 }+3{ (mA-1) }^{ 2 }+x-mA+1-5=0\\ 2{ x }^{ 2 }+3({ m }^{ 2 }{ A }^{ 2 }-2mA+1)+x-mA-4=0\\ 2{ x }^{ 2 }+3{ m }^{ 2 }{ A }^{ 2 }-7mA+x-1=0\\ 2{ x }^{ 2 }+3{ m }^{ 2 }({ x }^{ 2 }-6x+9)-7m(x-3)+x-1=0\\ 2{ x }^{ 2 }+3{ m }^{ 2 }{ x }^{ 2 }-18{ m }^{ 2 }x+27{ m }^{ 2 }-7mx+21m+x-1=0\\ { x }^{ 2 }(2+3{ m }^{ 2 })+x(-18{ m }^{ 2 }-7m+1)+27{ m }^{ 2 }+21m-1=0\\ \\ Since\quad the\quad line\quad is\quad tangent\quad the\quad discriminant,\quad D,\quad \\ is\quad equal\quad to\quad 0\\ \\ D={ (-18{ m }^{ 2 }-7m+1) }^{ 2 }-4(2+3{ m }^{ 2 })(27{ m }^{ 2 }+21m-1)\\ =(324{ m }^{ 4 }+252{ m }^{ 3 }+13{ m }^{ 2 }-14m+1)-4(81{ m }^{ 4 }+63{ m }^{ 3 }+51{ m }^{ 2 }+42m-2)\\ =13{ m }^{ 2 }-204{ m }^{ 2 }-14m-168m+1+8\\ =-191{ m }^{ 2 }-182m+9=0\\ \\ -191{ m }^{ 2 }-182m+9=0\\ 191{ m }^{ 2 }+182m-9=0\\ \\ m=\frac { -91\pm \sqrt { 8281+1719 } }{ 191 } \\ \\ m=\frac { -91+100 }{ 191 } ,\quad \frac { -91-100 }{ 191 } \\ \\ m=\frac { 9 }{ 191 } ,\quad -1\\ \\ Since\quad y=m(x-3)-1,\\ Substituting\quad m=\frac { 9 }{ 191 } ,\\ y=\frac { 9x }{ 191 } -\frac { 27 }{ 191 } -1\\ 191y=9x-27-191\\ -9x+191y=-218\\ 9x-191y-218=0\\ The\quad equation\quad 9x-191y-218=0\quad is\quad in\quad the\quad form\quad \\ dx-ey-f=0\\ where\quad d>0,\quad e>0,\quad f>0,\quad and\quad gcd(d,e,f)=1\\ d=9,\quad e=191,\quad f=218\\ \\ Substituting\quad m=-1,\\ y=-x+3-1\\ y=-x+2\\ x+y-2=0\\ The\quad equation\quad x+y-2=0\quad is\quad in\quad the\quad form\quad ax+by-c=0\\ where\quad a>0,\quad b>0,\quad c>0,\quad and\quad gcd(a,b,c)=1\\ a=1,\quad b=1,\quad c=2\\ \begin{cases} a=1 \\ b=1 \\ c=2 \\ d=9 \\ e=191 \\ f=218 \end{cases}\\ \\ \frac { d+e+f-2 }{ a+b+c } =\quad \frac { 9+191+218-2 }{ 4 } =\frac { 416 }{ 4 } =104\\ \\ Therefore,\\ \boxed { \frac { d+e+f-2 }{ a+b+c } =104 } \\ \\ \\ \\ \\

Daniel Ferreira
Feb 21, 2015

Considere r : a x + b y c = 0 r : ax + by - c = 0 e s : d x e y f = 0 s: dx - ey - f = 0 ,

Da figura conclui-se que ( 2 , 0 ) r (2, 0) \in r , segue que:

x y 1 2 0 1 3 1 1 = 0 x + 2 y + 2 3 y = 0 x y + 2 = 0 \begin{vmatrix} x & y & 1 \\ 2 & 0 & 1 \\ 3 & - 1 & 1 \end{vmatrix} = 0 \\\\ - x + 2y + 2 - 3y = 0 \\ \boxed{- x - y + 2 = 0}

Ora, a = 1 \boxed{a = 1} , b = 1 \boxed{b = 1} e c = 2 \boxed{c = 2} .

Dado o ponto ( 3 , 1 ) s (3, - 1) \in s , temos que y = m ( x 3 ) 1 y = m(x - 3) - 1 é a equação da tangente à elipse.

Substituindo a equação da reta s s na equação da elipse, devemos encontrar apenas um ponto (tangente) de intersecção, ou seja, Δ = 0 \Delta = 0 . Segue que,

2 x 2 + 3 [ m ( x 3 ) 1 ] 2 + x [ m ( x 3 ) 1 ] 5 = 0 ( 3 m 2 + 2 ) x 2 + ( 1 7 m 18 m 2 ) x + ( 27 m 2 + 21 m 1 ) = 0 2x^2 + 3\left [ m(x - 3) - 1 \right ]^2 + x - \left [ m(x - 3) - 1 \right ] - 5 = 0 \\ (3m^2 + 2)x^2 + (1 - 7m - 18m^2)x + (27m^2 + 21m - 1) = 0

Anulando o discriminante,

191 m 2 + 182 m 9 = 0 ( m + 1 ) ( m 9 191 ) = 0 191m^2 + 182m - 9 = 0 \\ (m + 1)(m - \frac{9}{191}) = 0

Se fizeres m = 1 m = - 1 , então e < 0 e < 0 ; portanto, m = 9 191 \boxed{m = \frac{9}{191}}

Segue que,

y = 9 191 ( x 3 ) 1 9 x 191 y 218 = 0 { d = 9 e = 191 f = 218 y = \frac{9}{191} \cdot (x - 3) - 1 \\\\ 9x - 191y - 218 = 0 \\\\ \begin{cases} d = 9 \\ e = 191 \\ f = 218 \end{cases}

Com efeito,

d + e + f 2 a + b + c = 416 4 = 104 \frac{d + e + f - 2}{a + b + c} = \\\\ \frac{416}{4} = \\\\ \boxed{\boxed{104}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...