All I'm given is the perimeter?

Geometry Level 5

Find the number of all integer sided isosceles obtuse-angle triangle with perimeter 2008.


The answer is 86.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jack Kuo
Jun 25, 2015

From Pythagorean theorem, we know that for a right triangle, a 2 + b 2 = c 2 a^2+b^2=c^2 . Given this is an isosceles triangle, a = b a=b , therefore a 2 + a 2 = c 2 a^2+a^2=c^2 , 2 a 2 = c 2 2a^2=c^2

We solve for the sides which satisfy the condition for a right triangle first:

2 a + c = 2008 2a+c=2008

2 a 2 = c 2 2a^2=c^2

c = 2 a c=\sqrt{2}a

substitute c c into the first equation,

2 a + 2 a = 2008 2a+\sqrt{2}a=2008

a 588.13 a\approx588.13 ; c 831.74 c\approx831.74

From this we can infer that for obtuse triangles, the hypotenuse must be longer then the condition for right triangle, so in this case, to get an obtuse triangle, the hypotenuse must be > 831.74 >831.74 . We need integer sides, so the first set of sides are :

832 ; 588 ; 588 832 ; 588 ; 588

Also note that for the sides to be integer, the hypotenuse must increase by 2 and the two sides decrease by 1, so every even hypotenuse above 832 satisfy the condition.

As soon as we reach hypotenuse length of 1004, the two other sides are no longer long enough to form a triangle, therefore 1004 is our upper limit.

1004 832 = 172 1004-832 = 172 This is the number of integer hypotenuses within the range, however, only the even-numbered hypotenuses satisfy our condition, therefore

172 ÷ 2 = 86 172\div2=86

86 is the correct answer.

F o r a r i g h t a n g l e d t r i a n g l e , w i t h l e g s = x , w e h a v e H y p o t h e s i s , h = x 2 . S o x = 2008 2 + 2 = 588.12... a n d h = 831.55... S o u p p e r l i m i t f o r x i s 588 a n d f o r b a s e b l o w e r l i m i t i s 832 > h . I f a l l t h r e e a r e i n l i n e , w e h a v e 502 502 1004. S o b = 1003 w o u l d b e O K . B u t x i s n o t a n i n t e g e r . S o b = 1002 i s h i g h e r l i m i t a n d x = 503 l o w e r l i m i t . N u m b e r o f s o l u t i o n s m o v i n g i n s t e p s o f 2 t o k e e p x a s a n i n t e g e r i s 1002 832 2 + 1 = 86. C h e c k f o r x N u m b e r o f s o l u t i o n s m o v i n g i n s t e p s o f 1 i s ( 588 503 ) + 1 = 86 , c h e c k e d . For~ a~ right~ angled~ triangle,~ with~~ legs=x,~ we~ have ~Hypothesis,~h~=x\sqrt2.\\ So~x=\dfrac{2008}{2+\sqrt2}=588.12...and~h=831.55...\\ So ~upper~ limit~for~x ~is ~588~~and~~for~base~b~lower~limit~is~832>h.\\ If~all~three~are~in~line,~we~have~502-502-1004.\\ So~ b=1003~would~ be~ OK. But~x~is~not~an~integer.\\ So~b=1002~is~higher~limit~and~x=503~lower~limit.\\ Number~of~solutions-moving~ in~ steps~ of~2~to~keep~x~as~an~integer~is~\dfrac{1002-832} 2+1=86.\\ Check~for~x~Number~of~solutions-moving~ in ~steps~ of~1~~is~~(588 -503)+1=\Large~~\color{#D61F06}{86,~checked.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...