Similar Triangles Might Help?

Geometry Level 1

In the above diagram, A B C D \square ABCD is a square with side A D \overline{AD} extended to point E E , and B E \overline{BE} is a straight line. If the length of B C \overline{BC} is B C = a = 30 \lvert \overline{BC}\rvert = a=30 and C F = b = 20 , \lvert \overline{CF}\rvert =b= 20, what is the area of C E F ? \triangle CEF?

148 150 152 154

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Eli Ross Staff
Oct 11, 2015

Since A E \overline{AE} is parallel to B C , \overline{BC}, F B C = F E D and F C B = F D E = 9 0 , \angle FBC = \angle FED \text{ and } \angle FCB = \angle FDE=90^\circ, implying F B C \triangle FBC and F E D \triangle FED are similar triangles. Also, since B C = C D \lvert \overline{BC}\rvert = \lvert \overline{CD}\rvert , we have D F = B C C F = 30 20 = 10. \lvert \overline{DF}\rvert = \lvert \overline{BC}\rvert - \lvert \overline{CF}\rvert = 30 - 20 = 10. Hence, C F : D F = B C : D E 20 : 10 = 30 : D E D E = 15. \begin{aligned} \lvert \overline{CF}\rvert : \lvert \overline{DF}\rvert &= \lvert \overline{BC}\rvert : \lvert \overline{DE}\rvert \\ 20 : 10 &= 30 : \lvert \overline{DE}\rvert \\ \lvert \overline{DE}\rvert &= 15. \end{aligned}

Let C E F \lvert\triangle CEF\rvert denote the area of C E F , \triangle CEF, and A B C E \lvert\square ABCE\rvert the area of A B C E . \square ABCE. Then since C E F = A B C E ( A B C D + D E F ) , \lvert\triangle CEF\rvert=\lvert\square ABCE\rvert - (\lvert\square ABCD\rvert + \lvert\triangle DEF\rvert), we have Area of C E F = A B C E ( A B C D + D E F ) = 1 2 × A B × ( B C + A E ) ( B C 2 + 1 2 × D E × D F ) = 1 2 × 30 × ( 30 + 45 ) ( 900 + 75 ) = 150. \begin{aligned} \text{Area of }\triangle CEF &= \lvert\square ABCE\rvert - (\lvert\square ABCD\rvert + \lvert\triangle DEF\rvert) \\ &= \frac{1}{2} \times \lvert \overline{AB}\rvert \times \left(\lvert \overline{BC}\rvert + \lvert \overline{AE}\rvert\right)- \left(\lvert \overline{BC}\rvert^2 + \frac{1}{2} \times \lvert \overline{DE}\rvert \times \lvert \overline{DF}\rvert\right) \\ &= \frac{1}{2} \times 30 \times (30 + 45) - (900 + 75) \\ &= 150. \end{aligned}

Since B F C D F E \triangle BFC \sim \triangle DFE , we have

x 10 = 30 20 \dfrac{x}{10}=\dfrac{30}{20} \implies x = 300 20 = 15 x=\dfrac{300}{20}=15

A C E F = 45 ( 30 ) 1 2 ( 45 ) ( 30 ) 1 2 ( 30 ) ( 20 ) 1 2 ( 30 ) ( 15 ) = 1350 675 300 225 = A_{CEF}=45(30)-\dfrac{1}{2}(45)(30)-\dfrac{1}{2}(30)(20)-\dfrac{1}{2}(30)(15)=1350-675-300-225= 150 \boxed{150}

Note:

  1. The area of C E F \triangle CEF is equal to the area of rectangle A E G B AEGB minus the area of B A E \triangle BAE minus the area of B F C \triangle BFC minus the area of C E G \triangle CEG .

A(CEF) = A(BEC) - A(BFC) = 0.5(BC)(CD) - 0.5(BC)(FC) = 0.5(30)(30) - 0.5(30)(20) = 150

Tina Sobo
Aug 30, 2016

From the given information, we know that FD = 10, because CD = 30 and CF = 20 (subtraction).

We know that triangles FDE and BAE are similar, because both share angle DEF and are right triangles, and and DE and AB are parallel, so angles DFE and ABE are equal).

Therefore side 1/side 2 of triangle ABE = side 1/side 2 of triangle FDE, and let DE = x.
30/(30+x) = 10/x --> 30x = 300 + 10x --> 20x = 300 --> x = 15

By the triangle formula, 1/2bh, the area of CFE is (1/2)(20)(15) = 150.

Notice that A E B = E B C \angle AEB = \angle EBC , so F C B C = A B A E 20 30 = 30 A E \frac{FC}{BC} = \frac{AB}{AE} \implies \frac{20}{30} = \frac{30}{AE} or A E = 45 AE = 45

Solving for the area of A C E F A_{CEF} ,

A C E F = A A E C B A A E B A B C F = [ 1 2 ( 30 + 45 ) ( 30 ) ] 1 2 ( 30 ) ( 45 ) 1 2 ( 20 ) ( 30 ) = A_{CEF}=A_{AECB} - A_{AEB} - A_{BCF}=[\frac{1}{2}(30 + 45)(30)] - \frac{1}{2}(30)(45) - \frac{1}{2}(20)(30)= 150 \boxed{150}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...