Tangents Secants and Circles...Oh My

Geometry Level 1

In the above diagram, line segment P T \overline{PT} is tangent to both circle O O and circle O . O'. Given the following three lengths: A B = 35 , P C = 30 , C D = 20 , \lvert\overline{AB}\rvert = 35, \lvert\overline{PC}\rvert = 30, \lvert\overline{CD}\rvert = 20, what is P A ? \lvert\overline{PA}\rvert?

25 45 30 35

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Eli Ross Staff
Oct 11, 2015

By the property of tangent and secant lines on a circle, we have

P T 2 = P C × P D ( in circle O ) P T 2 = P A × P B . ( in circle O ) \begin{aligned} \lvert\overline{PT}\rvert^2 &= \lvert\overline{PC}\rvert \times \lvert\overline{PD}\rvert \qquad (\text{ in circle } O')\\ \lvert\overline{PT}\rvert^2 &= \lvert\overline{PA}\rvert \times \lvert\overline{PB}\rvert. \qquad (\text{ in circle } O )\\ \end{aligned}

Therefore, P C × P D = P A × P B 30 × ( 30 + 20 ) = P A × ( P A + 35 ) P A 2 + 35 × P A = 1500 ( P A 25 ) × ( P A + 60 ) = 0. \begin{aligned} \lvert\overline{PC}\rvert \times \lvert\overline{PD}\rvert &= \lvert\overline{PA}\rvert \times \lvert\overline{PB}\rvert\\ 30 \times (30 + 20) &= \lvert\overline{PA}\rvert \times \left(\lvert\overline{PA}\rvert + 35\right)\\ \lvert\overline{PA}\rvert^2 + 35 \times \lvert\overline{PA}\rvert &= 1500\\ \left(\lvert\overline{PA}\rvert - 25\right)\times \left(\lvert\overline{PA}\rvert + 60\right) &= 0. \\ \end{aligned}

Since P A \lvert\overline{PA}\rvert is positive, we have P A = 25. \lvert\overline{PA}\rvert = 25.

By the power of a point, we have

( P T ) 2 = P A ( P B ) = P C ( P D ) (PT)^2=PA(PB)=PC(PD)

P A ( P A + 35 ) = 30 ( 50 ) PA(PA+35)=30(50)

( P A ) 2 + 35 ( P A ) 1500 = 0 (PA)^2+35(PA)-1500=0

Using the Quadratic Formula to compute for P A PA , we have

P A = 35 ± ( 35 ) 2 4 ( 1500 ) 2 PA=\dfrac{-35\pm \sqrt{(-35)^2-4(-1500)}}{2}

P A = 35 2 ± 85 2 PA=\dfrac{-35}{2}\pm \dfrac{85}{2}

Considering the positive value only, we have

P A = 50 2 = 25 PA=\dfrac{50}{2}=\boxed{25}

Sai Siva
Mar 4, 2018

Using properties of Secant Lines, -We know that:

(CD+CP) × CP = (BA + AP) × AP

-When We substitute the values we get:

(20 + 30) × 30 = (35 + AP) × AP

-Simplification:

1500= 35AP + AP^2

-This becomes a quadratic:

AP^2 + 35AP - 1500 =0

-The factors are -30 and 25, so we know that the length of AP(or PA) is 25

(AP+35) (AP-25)=0

By the power of a point on the lower circle, we have

( P T ) 2 = ( P C ) ( P D ) = 30 ( 50 ) = 1500 (PT)^2=(PC)(PD)=30(50)=1500

By the power of a point on the upper circle, we have

( P T ) 2 = ( A P ) ( A P + 35 ) (PT)^2=(AP)(AP+35)

1500 = ( A P ) 2 + 35 ( A P ) 1500=(AP)^2+35(AP)

( A P ) 2 + 35 ( A P ) 1500 = 0 (AP)^2+35(AP)-1500=0

( A P + 60 ) ( A P 25 ) = 0 (AP+60)(AP-25)=0

A P = 25 \boxed{AP=25}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...