Geometry problem 9 by Dhaval Furia

Geometry Level pending

If the rectangular faces of a brick have their diagonals in the ratio 3 : 2 3 : 15 3 : 2 \sqrt{3} : \sqrt{15} , what is the ratio of the length of the shortest edge of the brick to that of its longest edge?

3 : 2 \sqrt{3} : 2 2 : 5 2 : \sqrt{5} 1 : 3 1 : \sqrt{3} 2 : 3 \sqrt{2} : \sqrt{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 14, 2020

Let the side lengths of the brick be a a , b b , and c c such that a < b < c a<b<c . Then a 2 + b 2 : c 2 + a 2 : b 2 + c 2 = 3 : 2 3 : 15 \sqrt{a^2+b^2} : \sqrt{c^2+a^2} : \sqrt{b^2+c^2} = 3: 2\sqrt 3 : \sqrt{15} . Since we only need ratio as an answer, we can assume.

{ a 2 + b 2 = 3 a 2 + b 2 = 9 . . . ( 1 ) c 2 + a 2 = 2 3 c 2 + a 2 = 12 . . . ( 2 ) b 2 + c 2 = 15 b 2 + c 2 = 15 . . . ( 3 ) \begin{cases} \sqrt{a^2+b^2} = 3 & \implies a^2+b^2 = 9 & ...(1) \\ \sqrt{c^2+a^2} = 2\sqrt 3 & \implies c^2+a^2 = 12 & ...(2) \\ \sqrt{b^2+c^2} = \sqrt{15} & \implies b^2+c^2 = 15 & ...(3) \end{cases}

( 1 ) + ( 2 ) + ( 3 ) : 2 ( a 2 + b 2 + c 2 ) = 36 a 2 + b 2 + c 2 = 18 . . . ( 4 ) \begin{aligned} (1)+(2)+(3) : \quad 2(a^2 + b^2 + c^2) & = 36 \\ \implies a^2 + b^2 + c^2 & = 18 & ...(4) \end{aligned}

( 4 ) ( 3 ) : a 2 = 3 a = 3 (4)-(3): \ \ a^2 = 3 \implies a = \sqrt 3 and ( 4 ) ( 1 ) : c 2 = 9 c = 3 (4)-(1): \ \ c^2 = 9 \implies c = 3 . Then a : c = 3 : 3 = 1 : 3 a:c = \sqrt 3:3 = \boxed{1:\sqrt 3} .

Let the edges of the cube be of lengths a , b , c a, b, c . Then

a 2 + b 2 = 3 k a 2 + b 2 = 9 k 2 \sqrt {a^2+b^2}=3k\implies a^2+b^2=9k^2 where k k is a constant.

b 2 + c 2 = 2 3 k b 2 + c 2 = 12 k 2 \sqrt {b^2+c^2}=2\sqrt 3k\implies b^2+c^2=12k^2

c 2 + a 2 = 1 5 k c 2 + a 2 = 15 k 2 \sqrt {c^2+a^2}=\sqrt 15k\implies c^2+a^2=15k^2

a 2 + b 2 + c 2 = 18 k 2 a = 6 k , b = 3 k , c = 3 k \implies a^2+b^2+c^2=18k^2\implies a=\sqrt 6k,b=\sqrt 3k,c=3k

Hence the shortest edge is of length 3 k \sqrt 3k and the longest edge is of length 3 k 3k , and the ratio of their lengths is 3 : 3 = 1 : 3 \sqrt 3:3=\boxed {1:\sqrt 3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...