Geometry Proving Problem

Geometry Level 2

True or false :

In a triangle A B C ABC , A = 2 B \angle A = 2\angle B . Let a , b a,b and c c denote the lengths of the sides of B C , C A BC, CA and A B AB respectively. Then the equation a 2 = b ( b + c ) a^2=b(b+c) must be fulfilled.

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rishabh Jain
May 17, 2016

A = 2 B , C = π 3 B A=2B, C=\pi-3B sin A = sin 2 B and sin C = sin 3 B = 3 sin B 4 sin 3 B \small{\implies \sin A=\sin 2B \text{ and } \sin C=\sin 3B=3\sin B-4\sin^3 B}

Using a = 2 R sin A , b = 2 R sin B . . . a=2R\sin A, b=2R\sin B ... so that statement is: sin 2 A = sin B ( sin B + sin C ) \sin^2A=\sin B(\sin B+\color{#D61F06}{\sin C}) OR sin 2 2 B = sin B ( sin B + 3 sin B 4 sin 3 B ) \text{OR } \sin^2 2B=\sin B(\sin B+\color{#D61F06}{3\sin B-4\sin^3 B}) L H S : sin 2 B ( 4 4 sin 2 B ) = 4 sin 2 B cos 2 B = sin 2 2 B = R H S LHS: \sin^2B(4-4\sin^2 B)=4\sin^2B\cos^2B\\~~~~~~~~~~~~~=\sin^2 2B=RHS

Hence statement is True \boxed{\text{True}} .

Ahmad Saad
May 18, 2016

Note: The question is equivalent to "Prove that B C 2 = A C ( A C + A B ) BC^2=AC(AC+AB) ".

We start by introducing a straight line A D AD with point D D on line B C BC such that D A E = D B A = θ \angle{DAE}=\angle{DBA}=\theta . Now, observe that C A D = θ \angle{CAD}=\theta , A D C = 2 θ \angle{ADC}=2\theta , A C D = 180 3 θ \angle{ACD}=180-3\theta . Therefore, we can also deduce that A C D E C A ( A A A ) \triangle{ACD}\sim\triangle{ECA}(AAA)

Then, we can use this similarity to derive the following: A C B C = C D A C = A D A B A C A D + C D = C D A C = A D A B A D × C D + C D 2 = A C 2 and A D × C D + A D 2 = A B × A C \frac{AC}{BC}=\frac{CD}{AC}=\frac{AD}{AB}\Rightarrow\frac{AC}{AD+CD}=\frac{CD}{AC}=\frac{AD}{AB}\Rightarrow AD\times CD+CD^2=AC^2\text{ and }AD\times CD+AD^2=AB\times AC

Then, substituting in, we get B C 2 = ( A D + C D ) 2 = A D 2 + C D 2 + 2 A D × C D = A C 2 + A C × A B = A C ( A C + A B ) BC^2=(AD+CD)^2=AD^2+CD^2+2AD\times CD=AC^2+AC\times AB=AC(AC+AB)

Zajzon Csaba
Mar 8, 2018

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...