Geometry Question 1

Level pending

In the figure above, r 1 r_{ 1 } , r 2 r_{ 2 } , r 3 r_{ 3 } are the radius of circles O 1 O_{ 1 } , O 2 O_{ 2 } , O 3 O_{ 3 } respectively. Given that O 1 + O 2 O_{ 1 } + O_{ 2 } = 2 × O 3 2 \times O_{ 3 } , and r 1 = r 2 r_{ 1 } = r_{ 2 } , find Segment O 3 y O_{ 3 }y in terms of r 1 r_{ 1 } and r 3 r_{ 3 } .

2 ( r 1 + r 3 ) \sqrt{2}(r_{ 1 } + r_{ 3 }) r 3 + r 1 r_{ 3 } + r_{ 1 } 2 ( r 1 + r 3 ) 2 + r 1 \frac{\sqrt{2}( r_{ 1 } + r_{ 3 })}{2} + r_{ 1 } r 1 + r 3 2 + r 3 \sqrt{\frac{r_{ 1 } + r_{ 3 }}{2}} + r_{ 3 } 2 ( r 1 + r 3 ) 2 \frac{\sqrt{2}(r_{ 1 } + r_{ 3 })}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Giwon Kim
Mar 14, 2015

By drawing a line on: O 1 O 3 O_{ 1 }O_{ 3 } You can simply find O 3 x O_{ 3 }x using the Pythagorean Theorem:
( r 1 + r 3 ) 2 = O 3 x 2 + O 1 x 2 (r_{ 1 } + r_{ 3 })^{ 2 } = O_{ 3 }x^ { 2 } + O_{ 1 }x^ { 2 } ( r 1 + r 3 ) 2 = O 3 x 2 + O 3 x 2 (r_{ 1 } + r_{ 3 })^{ 2 } = O_{ 3 }x^ { 2 } + O_{ 3 }x^ { 2 } ( r 1 + r 3 ) 2 = 2 × O 3 x 2 (r_{ 1 } + r_{ 3 })^{ 2 } = 2 \times O_{ 3 }x^ { 2 } ( r 1 + r 3 ) = 2 × O 3 x (r_{ 1 } + r_{ 3 }) = \sqrt{2} \times O_{ 3 }x 2 ( r 1 + r 3 ) 2 = O 3 x \frac{\sqrt{2} (r_{ 1 } + r_{ 3 })}{2} = O_{ 3 }x And Since: O 3 y = O 3 x + r 1 O_{3}y = O_{3}x + r_{1} O 3 y = 2 ( r 1 + r 3 ) 2 + r 1 \boxed{O_{3}y = \frac{\sqrt{2} (r_{ 1 } + r_{ 3 })}{2} + r_{1}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...