Geometry Question by Mithil Shah # 5

Geometry Level 4

The lengths of the sides of a triangle are integers and its area is also an integer. One side is 21 long and the perimeter is 48. Find the length of the shortest side.


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the side lengths and the area of the triangle be a a , b b and c = 21 c=21 , and A A respectively. Then a + b + c = 48 a+b+c=48 , a + b = 27 \implies a+b=27 and b = 27 a b=27-a . Let s = 48 / 2 = 24 s=48/2=24 . By Heron's formula , we have:

s ( s a ) ( s b ) ( s c ) = A 24 ( 24 a ) ( 24 27 + a ) ( 24 21 ) = A 72 ( 24 a ) ( a 3 ) = A 6 2 2 ( 24 a ) ( a 3 ) = A 2 To equate perfect squares both sides ( 24 a ) ( a 3 ) = 2 n 2 where n N \begin{aligned} \sqrt{s(s-a)(s-b)(s-c)} & = A \\ \sqrt{24(24-a)(24-27+a)(24-21)} & = A \\ \sqrt{72(24-a)(a-3)} & = A \\ 6^2\cdot 2(24-a)(a-3) & = A^2 & \small \color{#3D99F6} \text{To equate perfect squares both sides} \\ \implies (24-a)(a-3) & = 2\color{#3D99F6}n^2 & \small \color{#3D99F6} \text{where }n \in \mathbb N \end{aligned}

Equating { 24 a = 2 n a 3 = n \begin{cases} 24-a = 2n \\ a-3 = n \end{cases} 24 a = 2 ( a 3 ) \implies 24-a=2(a-3) a = 10 \implies a = 10 b = 17 \implies b = 17

The shortest side length is a = 10 a=\boxed{10} .

Solved it exactly the same Heron's way, Chew-Seong….have a good one!

tom engelsman - 1 year, 1 month ago

Log in to reply

Alright. Keep it up.

Chew-Seong Cheong - 1 year, 1 month ago

H e r o n s f o r m u l a . L e t i n t e g e r s a > b , s i n c e a + b = 27 , b < 14 c = 21. A r e a = 1 4 { a + b + c } { a + b c } { c + ( a b ) } { c ( a b ) } A r e a = 1 4 { ( a + b ) 2 c 2 } { c 2 ( a b ) 2 } A r e a = 1 4 { 2 7 2 2 1 2 } { 2 1 2 ( a b ) 2 } A r e a = 1 4 2 144 { 2 1 2 ( a b ) 2 } m u s t b e a n i n t e g e r . A r e a = 3 2 { 2 1 2 ( a b ) 2 } m u s t b e a n i n t e g e r s a y = 3 n . 2 { 2 1 2 ( a b ) 2 } = n 2 . We can check for b=4,5. . . 13. But before checking all values, let us check if (a-b)=3 or 7, factors of 21. S o f o r ( a b ) = 3 : 2 { 2 1 2 3 2 } = 2 432 = 2 4 3 2 6 , n o t a s q u a r e n u m b e r . S o f o r ( a b ) = 7 : 2 { 2 1 2 7 2 } = 2 7 2 ( 9 1 ) = 2 4 7 2 a s q u a r e n u m b e r . ( a b ) = 7 , s o ( a , b ) = ( 17 , 10 ) . S o s m a l l e s t i s 10. Heron's~ formula.~~Let~integers~~a>b,~since~a+b=27,~~~b<14~~~c=21.\\ Area=\frac 1 4*\sqrt{\{a+b+c\}*\{a+b-c\}\{c+(a-b)\}*\{c-(a-b)\} }\\ Area=\frac 1 4*\sqrt{\{(a+b)^2-c^2\}\{c^2-(a-b)^2\} }\\ Area=\frac 1 4*\sqrt{\{27^2-21^2\}\{21^2-(a-b)^2\} }\\ Area=\frac 1 4*\sqrt{2*144*\{21^2-(a-b)^2\} }~~ must~be~an~integer.\\ Area=3*\sqrt{2*\{21^2-(a-b)^2\} }~~ must~be~an~integer~say=3n.\\ \implies~2*\{21^2-(a-b)^2\} =n^2 .\\ \therefore ~ \text{We can check for b=4,5. . . 13. } \\ \text{But before checking all values, let us check if (a-b)=3 or 7, factors of 21.}\\ So~~for~(a-b)=3~:-~~ 2*\{21^2-3^2\}=2*432=2^4*3^2*6,~~not~a~square~number. \\ So~~for~(a-b)=7~:-~~ 2*\{21^2-7^2\}=2*7^2(9-1)=2^4*7^2~~~a~square~number.\\ \therefore~(a-b)=7,~~so~(a,b) = (17,10). \\ So~smallest~ is ~\Large ~\color{#D61F06}{10}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...