The lengths of the sides of a triangle are integers and its area is also an integer. One side is 21 long and the perimeter is 48. Find the length of the shortest side.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Solved it exactly the same Heron's way, Chew-Seong….have a good one!
H e r o n ′ s f o r m u l a . L e t i n t e g e r s a > b , s i n c e a + b = 2 7 , b < 1 4 c = 2 1 . A r e a = 4 1 ∗ { a + b + c } ∗ { a + b − c } { c + ( a − b ) } ∗ { c − ( a − b ) } A r e a = 4 1 ∗ { ( a + b ) 2 − c 2 } { c 2 − ( a − b ) 2 } A r e a = 4 1 ∗ { 2 7 2 − 2 1 2 } { 2 1 2 − ( a − b ) 2 } A r e a = 4 1 ∗ 2 ∗ 1 4 4 ∗ { 2 1 2 − ( a − b ) 2 } m u s t b e a n i n t e g e r . A r e a = 3 ∗ 2 ∗ { 2 1 2 − ( a − b ) 2 } m u s t b e a n i n t e g e r s a y = 3 n . ⟹ 2 ∗ { 2 1 2 − ( a − b ) 2 } = n 2 . ∴ We can check for b=4,5. . . 13. But before checking all values, let us check if (a-b)=3 or 7, factors of 21. S o f o r ( a − b ) = 3 : − 2 ∗ { 2 1 2 − 3 2 } = 2 ∗ 4 3 2 = 2 4 ∗ 3 2 ∗ 6 , n o t a s q u a r e n u m b e r . S o f o r ( a − b ) = 7 : − 2 ∗ { 2 1 2 − 7 2 } = 2 ∗ 7 2 ( 9 − 1 ) = 2 4 ∗ 7 2 a s q u a r e n u m b e r . ∴ ( a − b ) = 7 , s o ( a , b ) = ( 1 7 , 1 0 ) . S o s m a l l e s t i s 1 0 .
Problem Loading...
Note Loading...
Set Loading...
Let the side lengths and the area of the triangle be a , b and c = 2 1 , and A respectively. Then a + b + c = 4 8 , ⟹ a + b = 2 7 and b = 2 7 − a . Let s = 4 8 / 2 = 2 4 . By Heron's formula , we have:
s ( s − a ) ( s − b ) ( s − c ) 2 4 ( 2 4 − a ) ( 2 4 − 2 7 + a ) ( 2 4 − 2 1 ) 7 2 ( 2 4 − a ) ( a − 3 ) 6 2 ⋅ 2 ( 2 4 − a ) ( a − 3 ) ⟹ ( 2 4 − a ) ( a − 3 ) = A = A = A = A 2 = 2 n 2 To equate perfect squares both sides where n ∈ N
Equating { 2 4 − a = 2 n a − 3 = n ⟹ 2 4 − a = 2 ( a − 3 ) ⟹ a = 1 0 ⟹ b = 1 7
The shortest side length is a = 1 0 .